## Sweeney Lake water quality improvement project

April 8, 2020 BCWMC virtual open house via WebEx

Laura Jester, Administrator BCWMC Greg Wilson, PE, Barr Engineering Co.





#### Meeting overview

#### logistics

- how to ask questions
  - > chat feature now
  - > email anytime after the presentation

- what we are not covering at this meeting
  - > water levels
  - > lake access
  - water surface use (boats, speed, hours)



#### outline

project background—goals, partners, funding, timeline

lake ecology, stratification, effects of phosphorus on water quality

Sweeney Lake and Schaper Pond water quality; results of aeration study and carp monitoring

aquatic plant assessment and treatment

carp management

alum treatment

expected outcomes



#### past watershed milestones

2004: MPCA designated Sweeney Lake as impaired water for high nutrients

2011: BCWMC completed Sweeney Lake TMDL, including modeling of two years w/o aeration

2011/2017: Schaper Pond treatment modification and effectiveness monitoring

2018: Aeration study completed—recommended alum treatment and discontinuing aeration

2019: completed carp monitoring and received federal 319 grant through MPCA



#### background for water quality improvement project

### Project goal, objectives and measurable outcomes

- reduce total phosphorus concentrations and meet Sweeney Lake water quality standards
  - curly-leaf pondweed control
  - > carp management
  - > alum treatment
- perform post-treatment monitoring to confirm intended results



#### background for water quality improvement project

#### Process and expected timeline

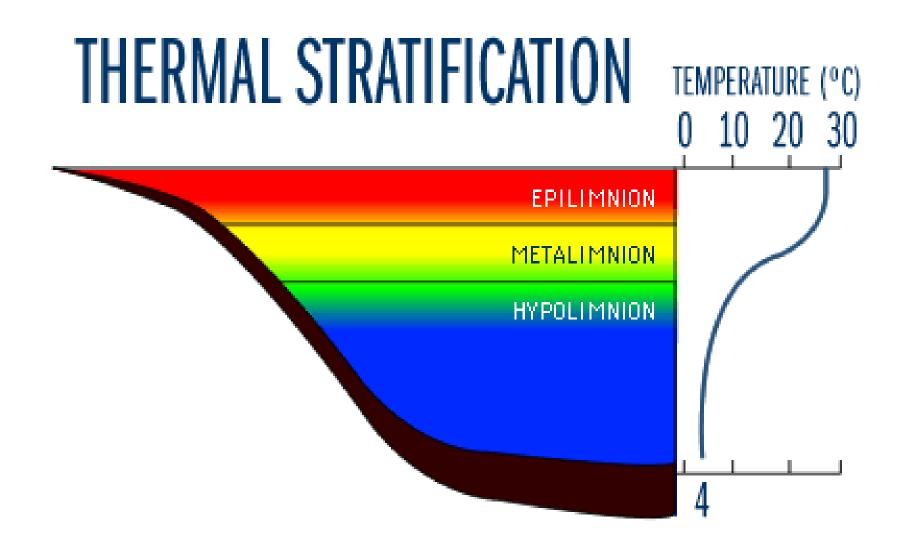
- stakeholder communication—ongoing
- aquatic plant assessment and curlyleaf pondweed management—spring and summer, 2020
- carp management actions—summer,
   2020
- alum treatment
  - Phase I—fall, 2020
  - Phase II—fall, 2022



#### background for water quality improvement project

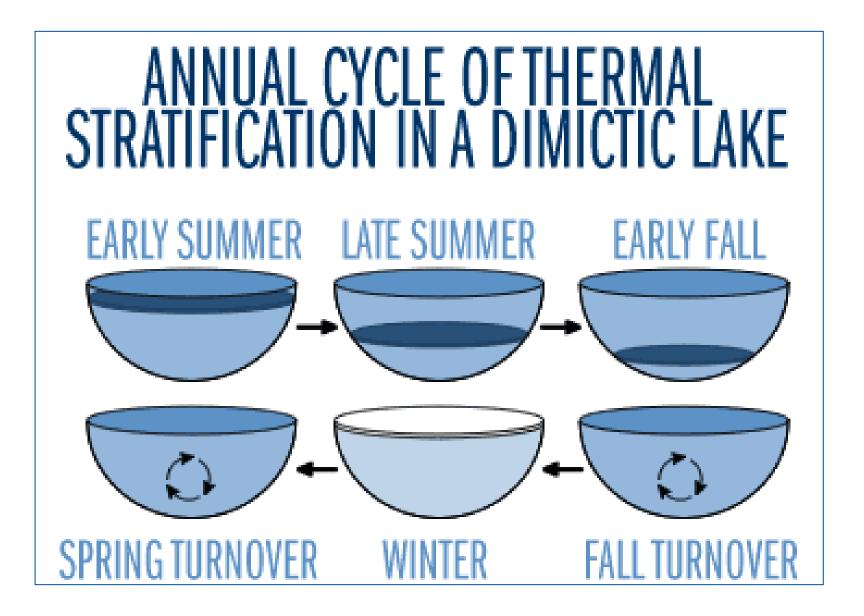
#### Project partners and funding

- Partners: BCWMC, City of Golden Valley,
   Sweeney Lake Association, MPCA
- \$568,080 budget
  - \$330,000 grant funding
  - \$238,080 BCWMC Capital Improvement Program funds




lake stratification

epilimnion: warmer, more light


metalimnion: transitional layer

hypolimnion: cold, dense water, sometimes anoxic, phosphorus released



lake stratification

"dimictic" lakes mix twice per year

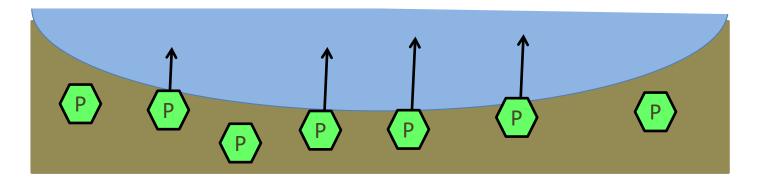


## phosphorus is the key





## Excess phosphorus means poor water quality


- phosphorus feeds algae and causes algal blooms
- algae decreases water clarity
- algal decay depletes dissolved oxygen near the lake bottom



## where does phosphorus come from?

#### Internal sources

- released from lake bottom sediments when oxygen levels are low
- released from lake bottom sediments with carp activities
- released into water column as curlyleaf pondweed dies off mid summer



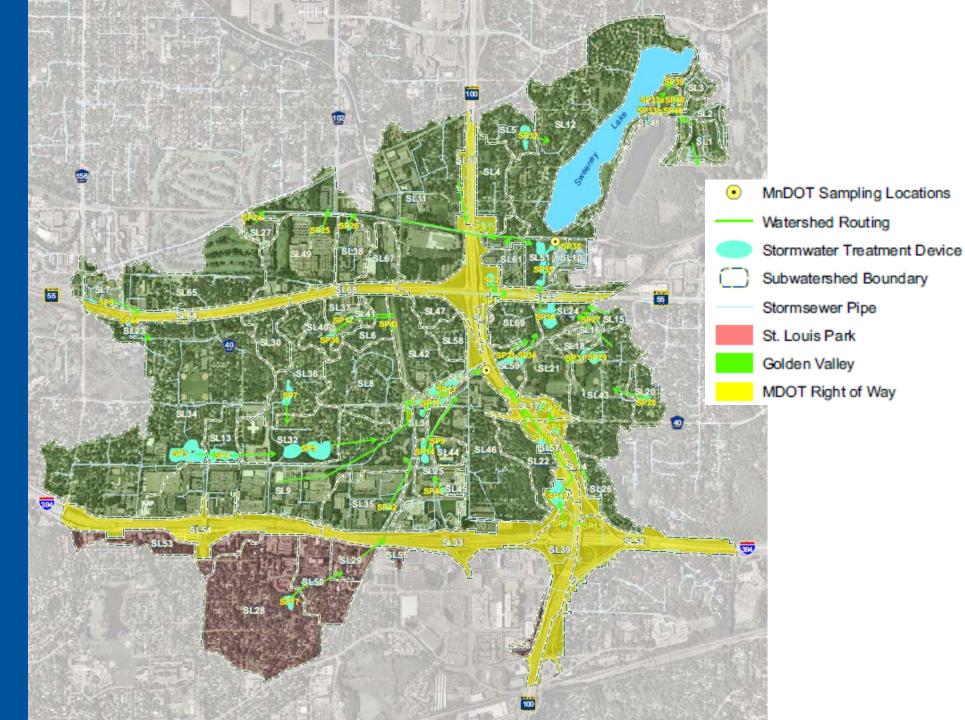


# where does phosphorus come from?

#### External sources

- runoff from hard surfaces streets, driveways, parking lots
  - > grass clippings
  - > leaves
  - > fertilizer










Sweeney Lake watershed

almost 2,400 acres drain to lake



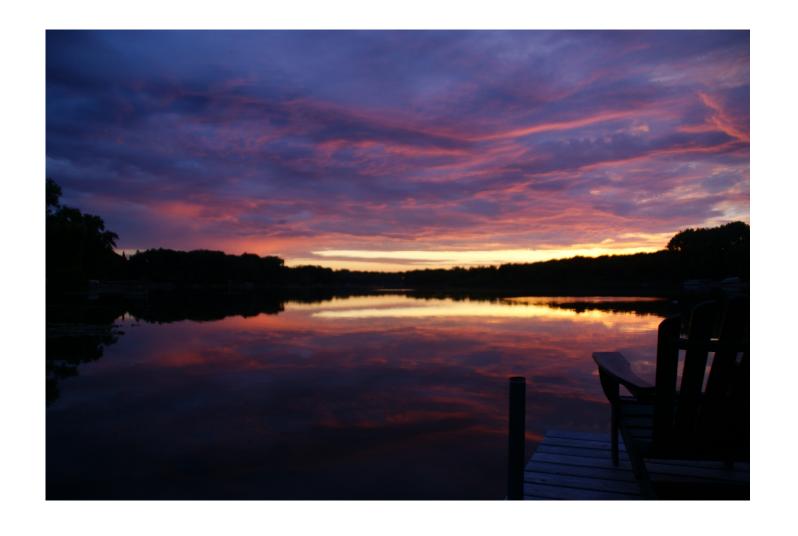
# where does phosphorus come from?

#### External sources

- along the lakeshore
  - > grass clippings
  - > leaves
  - > fertilizer








Shoreline buffers also improve habitat and reduce erosion!



Sweeney Lake Aeration Study 2017-2018

Schaper Pond
Carp Studies
2018 - 2019



## aeration study results

#### Conclusions

- internal phosphorus load is the most important source during summer
- aeration exacerbates summer water quality problems (10-30% increase in total phosphorus in upper layer of lake)
- in-lake alum treatment greatly improves water quality—meets goals
- aeration after an alum treatment may not provide significant benefits



## aeration study results

#### Recommendations

- suspend aeration and plan for first phase of alum treatment
- monitor lake water quality and biota
- report results and reconsider aeration and/or other management actions



Schaper Pond



effects of carp in Schaper Pond



#### Schaper Pond and carp monitoring

#### Results

- water quality monitoring confirms increasing phosphorus concentrations as flow moves through pond
- confirmed large numbers of carp inhabit
   Schaper Pond and Sweeney Lake
  - five to ten times higher than management threshold
- spring movement between Schaper and Sweeney; upstream migration, as well
  - no movement from young of year
     carp—Schaper functions as a nursery

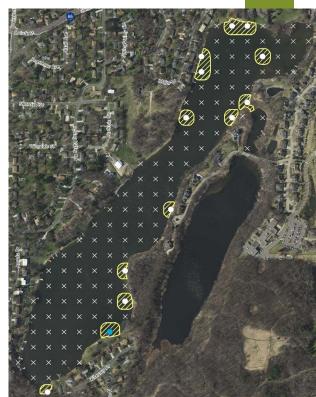


# aquatic plant assessment and treatment

### To inhibit CLP density after water clarity improves after alum treatment

- two plant surveys will be conducted—spring and summer, 2020
  - measure plant growth pre-project
  - > find extent of curly-leaf pondweed (CLP)
  - measure plant growth after CLP treatment




aquatic plant assessment and treatment

### To inhibit CLP density after water clarity improves after alum treatment

• up to 5.1 acres of curly-leaf pondweed (CLP) growth in Sweeney Lake will be targeted (and permitted) for herbicide

treatment—spring, 2020

- timing/application method depend on temperature and herbicide; locations posted
- submersed application anticipated April 1st May 15th

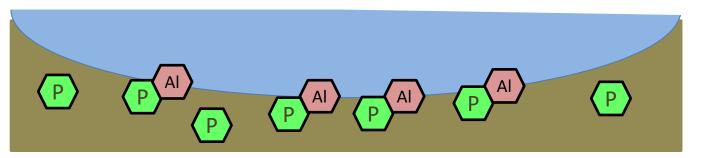


#### carp management

## To improve Schaper Pond treatment capability and Sweeney Lake water quality

- two electrofishing surveys in Sweeney Lake and Schaper Pond—estimate carp abundance and removal efficiency
- carp removal with baited box nets (7 days each) in July and September 3-5 nets throughout Sweeney, 2 in Schaper
  - drop biomass by more than half w/o impacting turtles
- document carp movement between Sweeney Lake and Schaper Pond through the end of 2020 – determine if barrier(s) are needed



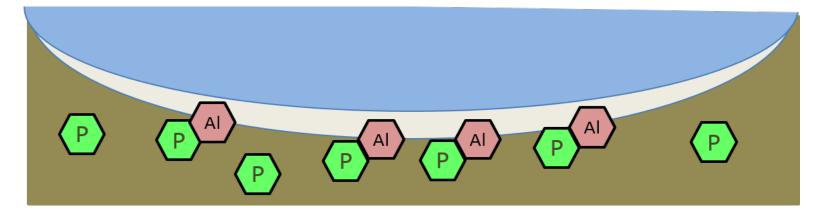

## alum treatments:

## what is alum?

#### Aluminum sulfate



- chemical precipitant used in hundreds of lake treatments in the past 45 years
- safe, non-toxic, non-hazardous
- forms "floc" that sweeps phosphorus from the water column and locks phosphorus on lake bottom
- works regardless of oxygen conditions






#### how long do alum treatments last?

## Typically maintains water quality improvements for 15 to 20 years

- aluminum reactivity remains for first couple of years
- long-term: slow but continual sedimentation adds phosphorus on top of alum floc layer, internal load will slowly return





#### alum treatment

#### How is alum applied? Other considerations

- applied at lake depths greater than 5'— targeting half dose each fall, 2020 & 2022
- coincides with cold temperatures; timing won't conflict with recreation
- boating (incl. wake boats) will not adversely impact alum effectiveness (activities not limited year after application)





## expected project outcomes

## How will water clarity and algae levels change?

- algae and harmful algal blooms (HAB) levels will drop significantly following first phase of alum treatment
  - small fluctuations may follow in subsequent summers, based on climate
  - second phase will ensure longevity
- water clarity will improve in response to lower algae
  - expect 1 to 2' increase in transparency



## expected project outcomes



#### How will aquatic plant growth change?

- better water clarity allows more plants to grow at deeper depths, but extent is limited by lake characteristics –expect more plant growth at 10-15' depths
- plants may grow at higher densities
- herbicide treatment intended to limit
   CLP, maintain health of native species
- lakeshore owners can address plants around docks on case-by-case basis with permits



#### Questions?



Laura Jester, BCWMC Administrator
laura.jester@keystonewaters.com
www.bassettcreekwmo.org/projects/all-projects/Sweeney-lake-water-quality-improvement-project

