
Feasibility Report for Westwood Lake Water Quality Improvement Project

St. Louis Park, MN

May 2018

Prepared for Bassett Creek Watershed Management Commission

Feasibility Report for Westwood Lake Water Quality Improvement Project

St. Louis Park, MN

May 2018

Prepared for Bassett Creek Watershed Management Commission

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

Feasibility Report for Westwood Hills Nature Center

May 2018

Contents

1.0	Background	1
1.1	Project Area Description	1
1	.1.1 Westwood Lake	1
1	.1.2 Westwood Lake Subwatershed	2
1	.1.3 Turtle Pond	2
1	.1.4 Wetland Delineation	3
1	.1.5 Soil Borings	3
1.2	Hydrologic and Hydraulic Models	3
1.3	Water Quality Models	3
2.0	Goals and Objectives	7
2.1	Scope	7
2.2	Considerations	8
3.0	Stakeholder Input	8
3.1	Public Stakeholder Meeting	8
3.2	Technical Stakeholder Meeting	8
3.3	BCWMC Stakeholder Comments	9
4.0	Water Quality Improvement Concepts	9
4.1	Concept 1 – Additional Permeable Pavers	9
4.2	Concept 2 – Expand Filtration Basins	10
4.3	Concept 3 – Linear Water Feature	11
4.4	Concept 4 – Heated Sidewalks	12
4.5	Concept 5 – Water Reuse	13
5.0	Water Quality Impacts	18
6.0	Project Cost Considerations	18
6.1	Opinion of cost	18
6.2	Concept 3 Potential Cost Reduction	19
6.3	Funding Sources	19
6.4	Project Schedule	19

P:\Mpls\23 MN\27\2327051\WorkFiles\CIP\Capital Projects\2019 Westwood Lake - Westwood Hills Nature Center Project WST-2\Feasibility Study\Report\Final\Westwood Hills Nature Center WST-2 Feasibility Study Report_v4.docx

7.0	Permitting, Site Impacts, and Coordination	21
7.1	Permitting	21
7.2	Site Impacts	21
7.3	Coordination	21
8.0	Recommendations	21
9.0	References	21

List of Tables

Table 5-1	Estimated Annual TSS and TP Removals for Concepts 1, 2, and 318	3
Table 6-1	Estimated Capital and Annualized Costs for Concepts 1, 2, 3, and 4)

List of Figures

Figure 1-1	BCWMC Major Subwatersheds and Drainage Patterns	4
Figure 1-2	Westwood Hills Nature Center Location and Land Use	5
Figure 1-3	Westwood Hills Nature Center - Existing Conditions and Proposed Conditions	6
Figure 4-1	Concept 1: Additional Permeable Pavers	14
Figure 4-2	Concept 2: Expand Filtration Basins	15
Figure 4-3	Concept 3: Linear Water Feature	16

List of Appendices, Attachments, or Exhibits

- Appendix A Westwood Hills Nature Center Site Topographic and Tree Survey
- Appendix B Soil Borings
- Appendix C Cost Estimates

Certifications

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of Minnesota.

Timbe

Michelle Kimble PE #: 42012

May 9, 2018

Date

1.0 Background

The BCWMC's 2015-2025 Watershed Management Plan (Plan, Reference (1)) addresses the need to improve the quality of stormwater runoff reaching the Mississippi River by reducing nonpoint source pollution, protecting and enhancing fish and wildlife habitat, reducing stormwater runoff volume to improve water quality, and taking into account aesthetics and recreational opportunities within the watershed. This project is consistent with the goals (Section 4.1) and policies (Sections 4.2.1 and 4.2.10) in the Plan. The Plan's 10-year Capital Improvement Program (CIP, Table 5-3 in the Plan) includes project WST-2 Westwood Lake Water Quality Improvement Project. The BCWMC approved the 5-year (working) CIP at their March 17, 2016 meeting, which included implementation of the Westwood Lake Water Quality Improvement Project in 2019.

The Westwood Lake Water Quality Improvement Project is part of a larger project at the Westwood Hills Nature Center (WHNC). The City of St. Louis Park is in the planning phase of a complete reconstruction of its facilities in 2019. A master plan for the reconstruction project was completed in May 2016 for the City of St. Louis Park. The proposed improvements in the master plan include trail circulation and wayfinding, additional parking, expanded outdoor classroom area and water garden, expanded natural play and outdoor education area, interpretive features, and a new interpretive center building. This study examines the feasibility of constructing additional water quality improvements (that would go above and beyond stormwater treatment that is required by the development project) to treat stormwater runoff that would otherwise flow untreated to Westwood Lake.

1.1 **Project Area Description**

The WHNC is a 160-acre park located in St. Louis Park in the southern portion of the Bassett Creek watershed, southeast of the intersection of Interstate 394 and Highway 169 (Figure 1-1). The park is bordered by Westwood Hills Drive, Virginia Avenue South, and Westwood Hills Road on the east; and Westmoreland Lane and Flag Avenue South on the south and west. Wayzata Boulevard is north of the park. The park contains trails, marsh, woods, and restored prairie, and is surrounded by medium density residential and commercial areas (Figure 1-2). The existing interpretive center at the WHNC is located in the southeast portion of the park, approximately 360 feet north of the existing parking lot, and is accessed via a paved trail from the parking lot. The existing interpretive center will be deconstructed as part of the larger WHNC reconstruction project and the new interpretive center will be built near the north edge of the existing parking lot. The existing lot will be demolished and reconstructed farther to the south. The new facility will be nearly five times as large as the existing building. The existing parking lot has 33 parking spaces and the proposed parking lot will provide nearly double the number of parking spaces (Figure 1-3).

1.1.1 Westwood Lake

Westwood Lake is a 38-acre lake in St. Louis Park in the southern portion of the Bassett Creek watershed. The BCWMC classified Westwood Lake as a Priority 1 shallow lake, making this water quality improvement project eligible for inclusion in the BCWMC's CIP. Westwood Lake has a maximum depth of 5 feet, a normal water elevation of 887.6 feet (NAVD88 datum), and a 100-year elevation of 890.0 feet (NAVD88 datum).

Runoff draining into the lake enters through five storm sewers located around the perimeter. On the north side of the lake, the outlet is a 400-foot long open channel which discharges to a 27-inch reinforced concrete pipe (RCP) storm sewer at an elevation of 886.2 feet (NAVD88 datum). From there runoff drains through several ponds and pipes over 1500 feet in length, and outlets into the main stem of Bassett Creek, downstream of General Mills Boulevard.

Westwood Lake's water quality, including total phosphorus concentrations, meets Minnesota Pollution Control Agency (MPCA) water quality standards for shallow lakes in the north central hardwood forest ecoregion; therefore, the lake is not included on the MPCA's 303(d) List of Impaired Waters. Westwood Lake also meets the MPCA standards for specific conductance (when chloride measurements are not available, specific conductance is used as a surrogate for chloride).

Specific conductance in Westwood Lake has remained relatively stable over time, ranging from about 400 to 500 µmhos/cm @ 25°C during 2011 and 2015, well below the MPCA standard of 1,000 µmhos/cm @ 25°C. Although chlorides have not been measured in Westwood Lake, chloride concentrations can be estimated by using a relationship between specific conductance and chlorides documented for Nine Mile Creek. Using that relationship, the estimated chloride concentrations in Westwood Lake during 2011 and 2015 ranged from about 40 to 50 mg/L, well below the MPCA chronic standard of 230 mg/L. (Study, Reference (2))

In 2015, *Lynchnothamnus barbaratus* (bearded stonewort) was observed in Westwood Lake. This was the first known occurrence of this plant in Minnesota. Bearded stonewort and other the two other dominant plant species in the lake, fetid stonewort (*Chara contraria*) and coontail (*Ceratophyllum demersum*), are strong nutrient absorbers and likely contribute to the good water quality in the lake. (Study, Reference (2))

1.1.2 Westwood Lake Subwatershed

Westwood Lake's 463-acre watershed includes portions of St. Louis Park, Golden Valley, and Minnetonka. The watershed primarily comprises low-density residential land use, park and recreational areas, and a golf course (Figure 1-2). The lake is adjacent to parkland and within the WHNC, both of which provide access to trails surrounding the lake and opportunities for canoeing or kayaking, scenic viewing, birding, and hiking. The project area is generally flat or moderately undulating, with the exception of a steep hilly area near the existing WHNC interpretive center. Adjacent upland areas east of the parking lot have steep topography. A detailed topographic map can be found in Appendix A.

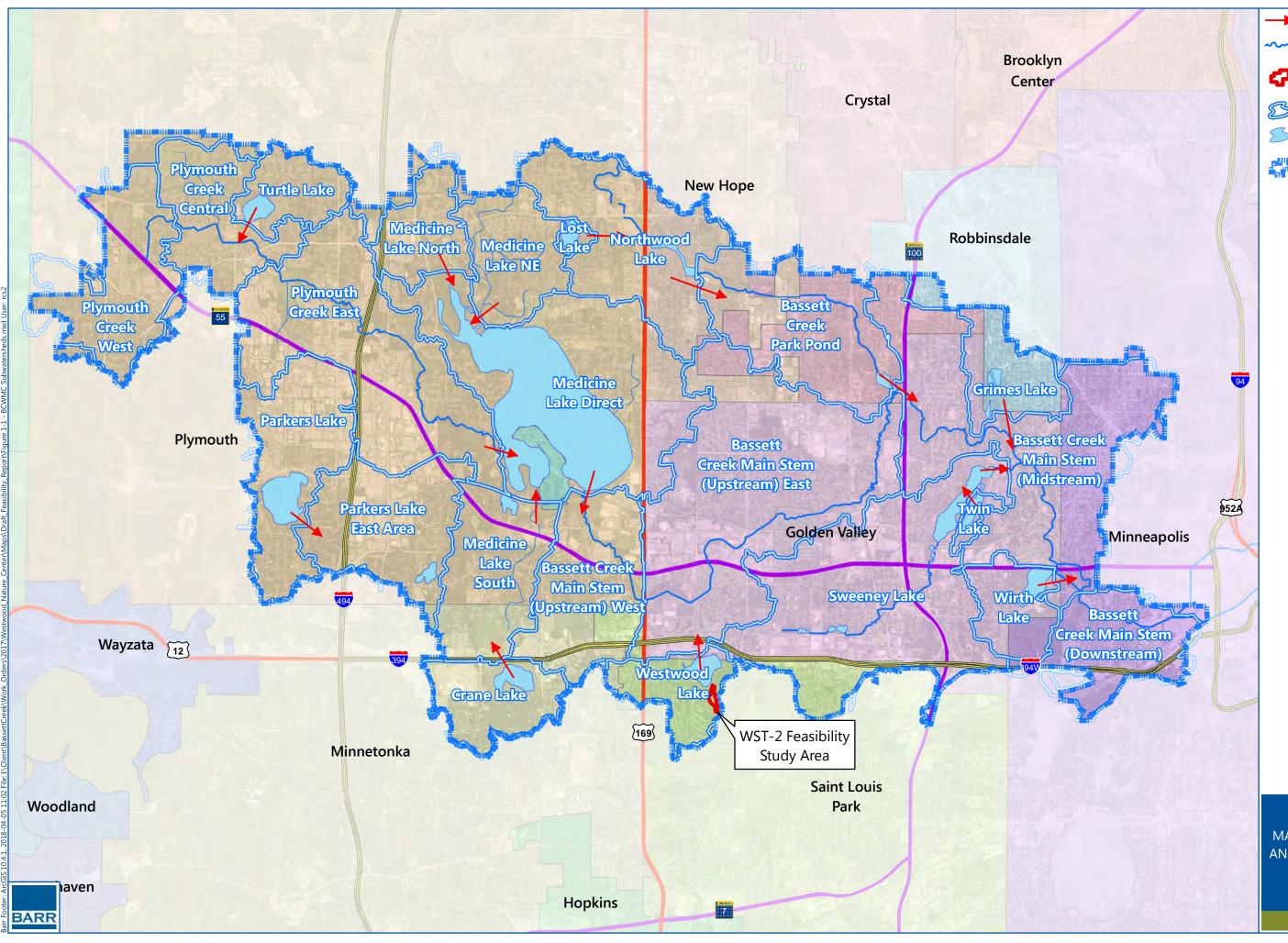
1.1.3 Turtle Pond

Turtle Pond is a small wetland located northwest of the proposed WHNC interpretive center building. The Turtle Pond outlet is a 12-inch polyvinyl chloride (PVC) culvert with an invert elevation of 889.4. Turtle Pond drains into a small unnamed wetland which then drains into Westwood Lake via an 8-inch PVC culvert with an invert elevation of 888.6 (Figure 1-3).

1.1.4 Wetland Delineation

The City of St. Louis Park, in coordination with HGA Architects and Engineers (HGA), completed a site topographic and tree survey, wetland delineation, and Phase 1 environmental site assessment in 2017 as part of the larger WHNC reconstruction project. The site topographic and tree survey, which shows the wetland locations, was provided by HGA and is included in Appendix A.

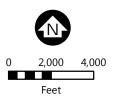
1.1.5 Soil Borings


The City of St. Louis Park, in coordination with HGA, completed soil borings in 2017 for the proposed WHNC reconstruction project. Soils are generally characterized as fill, swamp deposits, peat, or clay with groundwater seven to ten feet below grade. The Soil boring logs were provided by HGA and are included in Appendix B.

1.2 Hydrologic and Hydraulic Models

The BCWMC completed the Phase II XP-SWMM model for Bassett Creek and its contributing watersheds in 2016. Hydrologic and hydraulic information was not reviewed or analyzed as part of this feasibility study because no changes are proposed that would impact the information included in the XP-SWMM model.

1.3 Water Quality Models


The BCWMC developed the P8 model for Bassett Creek and its contributing watersheds in 2012. The P8 water quality model was not reviewed or analyzed as part of this feasibility study, however this study included a preliminary MIDS and water balance analysis to estimate the water quality improvement expected from each proposed alternative. Final design efforts should include both additional refinements to the water quality modeling as the design components are finalized and incorporation of the constructed improvements into the BCWMC's P8 model after completion of the project.

→ Flow Directions

- ----- BCWMC Priority Streams
- WST-2 Feasibility Study Area
- Major Subwatersheds
 - Lakes and Ponds
 - BCWMC Jurisdictional Boundary

BCWMC MAJOR SUBWATERSHEDS AND DRAINAGE PATTERNS Westwood Hills Nature Center

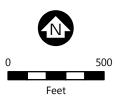
FIGURE 1-1

W 13th La

W 13 1/2 St

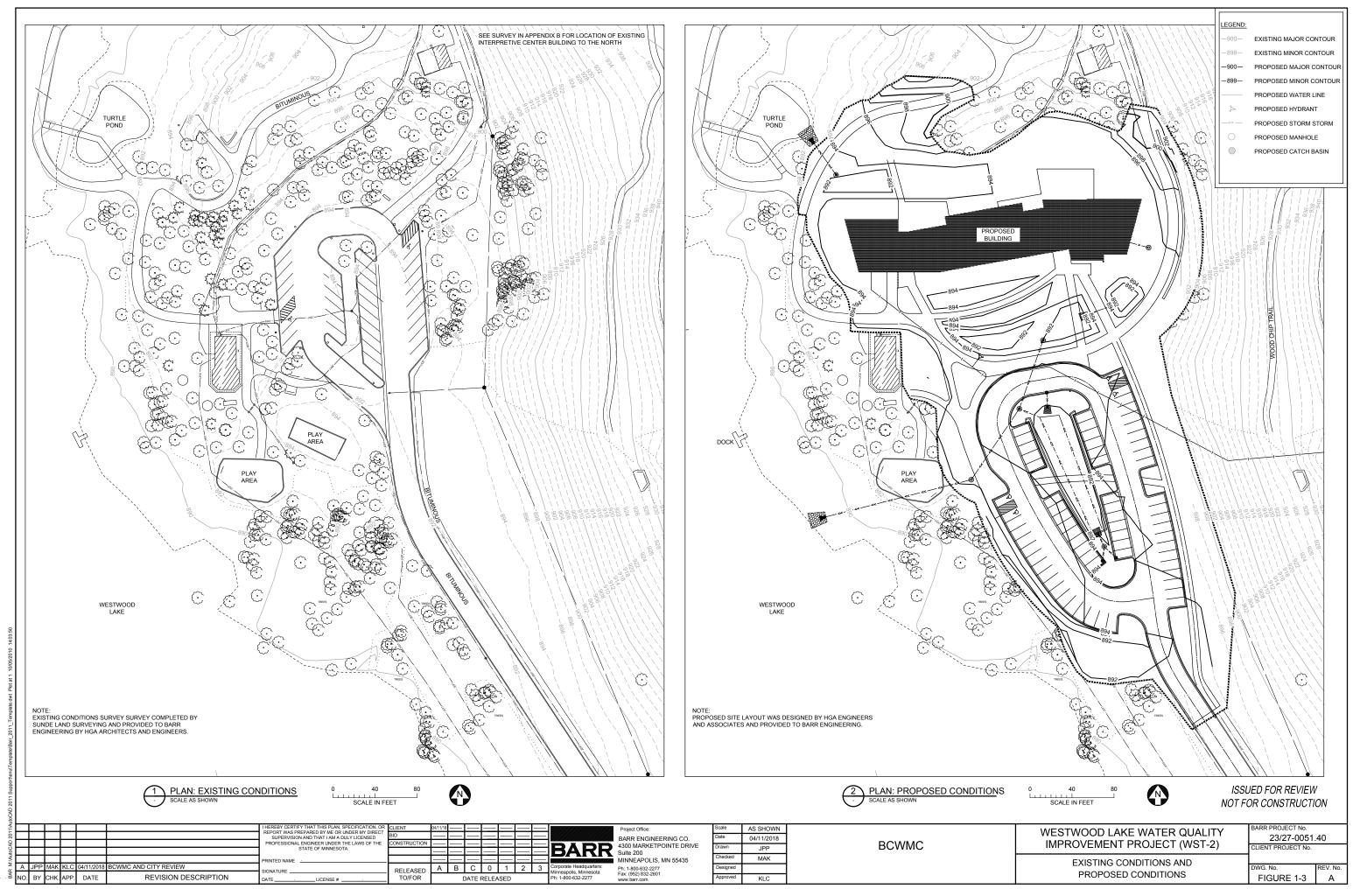
W 14th St

WST-2 Feasibility Study Area



Westwood Hills Nature Center

2016 Generalized Land Use (Met Council)


- Open Water
- Retail and Other Commercial
- Office
- Institutional
- Residential
- Park, Recreational, or Preserve
- Golf Course

LOCATION AND LAND USE Westwood Hills Nature Center Bassett Creek Watershed Management Commision

FIGURE 1-2

CADD USER. Josh Phillips FILE: M:DESIGN23270051 402327005140_EXISTING_VS_PROPOSED.DWG PLOT SCALE: 112 PLOT DATE: 4/11/2018 3:34

2.0 Goals and Objectives

The goals and objectives of the feasibility study are to:

- 1. Review the feasibility of improving quality of stormwater runoff reaching Westwood Lake.
- 2. Develop conceptual designs.
- 3. Provide an opinion of cost for design and construction of concepts.
- 4. Identify potential impacts and permitting requirements.

The goals and objectives of the water quality project is to:

- 1. Reduce nonpoint source pollution
- 2. Protect and enhance fish and wildlife habitat at WHNC
- 3. Reduce stormwater runoff volume
- 4. Prevent erosion of soil into Westwood Lake and surrounding wetlands
- 5. Consider aesthetics and recreational opportunities at WHNC
- 6. Increase the quality of wetlands

2.1 Scope

As part of the larger WHNC reconstruction project, the City of St. Louis Park is proposing to construct additional water quality improvements to treat stormwater runoff that would otherwise flow untreated to Westwood Lake. The BCWMC's WST-2 CIP project funding would be applied towards the portions of the water quality improvements that provide treatment "above and beyond" the BCWMC requirements for the WHNC reconstruction project.

This project is consistent with the goals (Section 4.1) and policies (Sections 4.2.1, 4.2.2, and 4.2.10) in the 2015 – 2025 BCWMC Watershed Management Plan. The BCWMC has included the Westwood Hills Nature Center Water Quality Project in its CIP, based on gatekeeper policy 110 from the BCWMC Plan:

The BCWMC will consider including projects in the CIP that meet one or more of the following "gatekeeper" criteria.

- Project is part of the BCWMC trunk system (see Section 2.8.1, Figure 2-14 and Figure 2-15)
- *Project improves or protects water quality in a priority waterbody*
- Project addresses an approved TMDL or watershed restoration and protection strategy (WRAPS)
- Project addresses flooding concern

The BCWMC will use the following criteria, in addition to those listed above, to aid in the prioritization of projects:

- Project protects or restores previous Commission investments in infrastructure
- Project addresses intercommunity drainage issues
- Project addresses erosion and sedimentation issues

- Project will address multiple Commission goals (e.g., water quality, runoff volume, aesthetics, wildlife habitat, recreation, etc.)
- Subwatershed draining to project includes more than one community
- Addresses significant infrastructure or property damage concerns

The BCWMC will place a higher priority on projects that incorporate multiple benefits, and will seek opportunities to incorporate multiple benefits into BCWMC projects, as opportunities allow.

The Westwood Hills Nature Center Water Quality Project meets multiple of the gatekeeper criteria—the project is part of the BCWMC trunk system, the project would improve water quality, increase education opportunities, provide habitat, and address multiple commission goals.

2.2 Considerations

The following considerations played a key role in determining recommendations for the Westwood Hills Nature Center Water Quality Project and should continue to be evaluated through final design:

- 1. Maximizing the water quality benefit.
- 2. Minimizing permitting required to construct the project.
- 3. Minimizing wetland impacts.
- 4. Minimizing tree loss.
- 5. Adding educational opportunities.

3.0 Stakeholder Input

3.1 Public Stakeholder Meeting

Two public stakeholder open house meetings were held on February 22 and 28, 2018. The City of St. Louis Park and their consultant organized these meetings. The BCWMC administrator did not attend either meeting, however Chair de Lambert did attend one of the meetings. While the presentations and discussions focused on the proposed interpretive center, the BCWMC had a display at the meetings with a watershed map, a brief project description, educational materials, and information about the BCWMC. An opportunity was provided for residents to offer thoughts or concerns about the project on index cards; however, no comments were passed along to Barr or BCWMC concerning the water quality portion of the project.

3.2 Technical Stakeholder Meeting

Two technical stakeholder meetings were held for the project. The first was held onsite on November 21, 2017. The meeting included representatives from the City of St. Louis Park, HGA (the city's architect and engineer), and the Commission Engineer. The attendees discussed project scope, field work schedule, design and meeting schedules, and site layout.

The second meeting was held at City of St. Louis Park offices on March 1, 2018. Attendees included representatives from the City of St. Louis Park, the city's consultant, the BCMWC administrator, and the BCWMC Engineer. Attendees discussed possible design concepts, permitting needs, project schedule and funding were also reviewed.

3.3 BCWMC Stakeholder Comments

A draft version of the April 2018 draft report was provided to the BCWMC administrator and City of St. Louis Park staff. The draft feasibility study was revised in response to the comments received. Additional review of the technical comments is recommended during final design.

4.0 Water Quality Improvement Concepts

This section provides a summary of the alternatives analyzed for water quality and other improvements at WHNC. Multiple alternatives were evaluated for removing sediment, improving water quality, protecting and enhancing fish and wildlife habitat, and adding aesthetic and educational opportunities within the project area. The measures considered for potential implementation include the following:

- Adding additional permeable paver parking bays in the proposed parking lot for water quality treatment and a possible reduction of salt application in the parking bay (Concept 1)
- Increasing the size of proposed filtration basins, or supplementing the site with additional filtration basins (Concept 2)
- Installing a linear water quality feature on the north side of the interpretive center with signage and interactive features for education (Concept 3)
- Directing additional site runoff to Turtle Pond to increase the water quality treatment provided by the pond (Concept 3)
- Heating concrete sidewalks near building to avoid placing salt during winter months (Concept 4)
- Water reuse (Concept 5)

Five water quality treatment concepts were developed. The proposed concepts will reduce sediment, phosphorus, or chloride loading to Westwood Lake and all downstream water bodies, including Bassett Creek and the Mississippi River.

4.1 Concept 1 – Additional Permeable Pavers

Concept 1 includes installing additional permeable pavers in the proposed parking lot. The proposed parking lot is designed with an outer and inner ring of parking stalls and includes permeable pavers at the inner ring location. Concept 1 would increase the amount of pervious concrete pavers by constructing the outer ring of parking stalls with the same permeable paver design proposed for the inner ring of parking stalls. All pervious pavers would include granular filters with draintile beneath them. An overflow structure would be installed in each paver bay to minimize flooding if the pavers become plugged. Educational signage would be installed near the pavers explaining how the system works to improve

water quality and why chlorides are harmful to aquatic resources. Concept 1 is shown in detail on Figure 4-1.

The soil borings show soils near the proposed parking lot that would not be conducive to infiltration. As a result, the permeable pavers are designed as a filtration system. Pervious pavers improve water quality by trapping sediments and nutrients at the surface or in the sand filter below. There is also evidence that pervious pavers require less salt application during winter months than traditional bituminous or concrete paving. Installing additional permeable pavers would reduce sediment and nutrient loading, and may reduce chloride loading to Westwood Lake, Bassett Creek, and the Mississippi River. Signage could be used to educate the visitors on how the pavers are improving water quality in the watershed.

To maintain effectiveness, permeable pavers must be maintained. Regular maintenance includes removing accumulated sediment or organic matter with sweeping and cleaning out the draintile. Even with regular maintenance, eventually the pavers may need to be removed and reinstalled to replace the filter media. The life of the pavers depends on how well they are maintained.

4.2 Concept 2 – Expand Filtration Basins

Concept 2 includes increasing size and filtration capacity of the proposed filtration basins on the south side of the proposed interpretive center. Two areas have been identified for expansion of the filtration basins, which could provide an additional 3,300 cubic feet (0.08 acre-feet) of storage. Educational signage would be installed near the basins explaining how the system works to improve water quality and habitat. Concept 2 is shown in detail on Figure 4-2. At the time of this report, the site design for the WHNC reconstruction project had not yet been completed. It is possible additional locations could be identified for expansion of the filtration basins. This should be evaluated during final design.

The soil borings show soils near the proposed parking lot that would not be conducive to infiltration. As a result, the basins are designed as filtration systems. The expanded filtration basins would match the design of the proposed filtration basins. These designs have not yet been finalized but will generally include a sand trench with draintile, planting soil, surface mulch, plantings, and an overflow outlet. Filtration basins improve water quality by trapping sediments and nutrients, or removing nutrients through plant uptake. Expanding the proposed filtration basins would increase the filtration capacity of the basins, and further reduce the sediment and nutrient loading to Westwood Lake, Bassett Creek, and the Mississippi River. Signage could be used to educate the visitors on how the basins are improving water quality in the watershed.

To maintain effectiveness, filtration basins must be maintained. Regular maintenance includes removal of trash and debris, weeding, cleaning out the draintile, loosening the surface of the basin, removing accumulated sediment or organic material, replacing plants, and replacing surface mulch. Even with regular maintenance, eventually the filtration basins may require removal and replacement of the planting soil, plants, and sand trench to restore effectiveness.

Adding iron filings to the sand trenches for iron enhanced sand filtration to remove soluble phosphorus was discussed. Soil borings near the basins show groundwater elevations to be as high as 888.0 feet

(NAVD88 datum), and could be higher when groundwater is seasonally high. The basin sand trenches could be close to this elevation. We do not recommend using iron in continuously wet areas as the system can go anoxic, the iron can clump together, the system may discharge iron into the downstream waterbodies, and may not function as intended. Most of the maintenance for this option could be accomplished with volunteers.

4.3 Concept 3 – Linear Water Feature

Concept 3 includes collecting stormwater runoff from the roof of the proposed interpretive center and the north patio areas. Runoff would be routed through a series of meandering channels and basins on the north side of the proposed interpretive center. Pumps would recirculate the runoff through the channels and basins until it leaves the system through infiltration, evaporation, or evapotranspiration. The recirculation pumps could be solar-powered or manual. An overflow would be provided from the downstream basin to Turtle Pond for storm events larger than the design event. Turtle Pond is currently stagnant and receives minimal runoff. This concept would increase flows to Turtle Pond, which may improve its water quality.

All of the basins and channels would be constructed to promote infiltration. Soils may not be highly conducive to infiltration, however an appropriate infiltration rate for the soil type would be used in design calculations. Infiltration basins improve water quality by trapping sediments and nutrients, or removing nutrients through plant uptake, and reducing runoff volume. Routing stormwater runoff to this series of channels and basins would reduce the sediment and nutrient loading to Westwood Lake, Bassett Creek, and the Mississippi River.

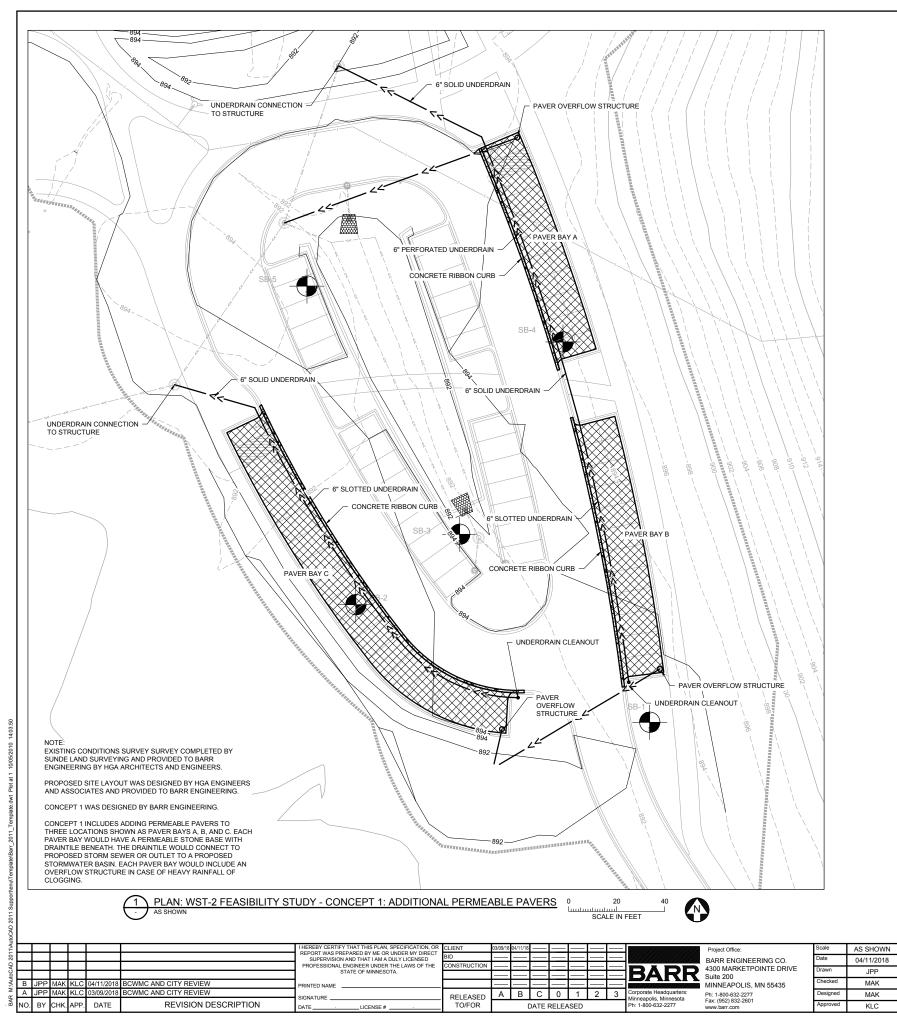
To maintain effectiveness, infiltration basins must be maintained. Regular maintenance includes removal of trash and debris, weeding, cleaning out the draintile, loosening the material at the surface of the basin, removing accumulated sediment or organic material, replacing plants, and replacing surface mulch. Even with regular maintenance, eventually the basins may require removal and replacement of surface mulch and plants.

In addition to water quality benefits, this system could be designed as an educational experience with signage, pedestrian bridges, and interactive features. A recirculation pump could be powered with a stationary bike, a wheel, or a hand crank. When initiated, the manual pumping could discharge at a highly visible, elevated, and accessible location. These, or similar educational features, would allow WHNC visitors to see the connection between their effort and the recirculation flow. A separate solar-powered recirculation pump could provide a lower "base-flow" for the system to ensure that the system is providing consistent water quality treatment. A manual switch could be provided for the pumps to turn them off during winter months or when visitors are not at the site.

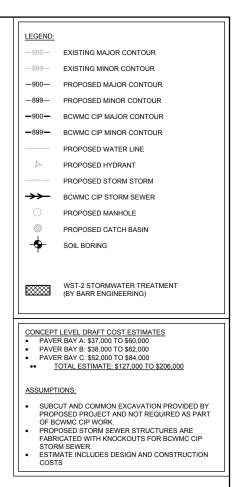
WHNC had nearly 36,000 program participants in 2017, ranging in age from toddlers to seniors. There were also an unknown number of visitors who used the park and trails. WHNC staff develops educational programming for many groups throughout the year. Discussions with WHNC staff resulted in the following ideas for educational opportunities related to Concept 3:

- Install a rain gauge and record how much it rains. Relate the gauge to the amount of water in the system. Have discussion about precipitation trends and if the area is in a wet or dry cycle.
- Place a visual marker within the manhole which shows water level in the pipe/manholes. Relate the marker to the recent amount of rain, or lack of rain.
- Construct the structure that conveys rain from the roof down to the water feature in a location that can be seen when standing inside the building and out on the patio.
- Install signage showing the volume of runoff the system holds and the runoff volume the building roof is generating, which otherwise would be infiltrated if the area was forested.
- Install signage showing the complete hydrologic cycle from rain, runoff, infiltration, evapotranspiration, and overflow; install markers along the linear water feature system to identify each part in the cycle.
- Plant each basin with specific plants for wet and dry zones, allowing staff to educate visitors on plant identification.
- Measure the amount the solar pump is pumping and show how the amount of water being pumped increases when the sun is brighter.
- Install signage inside the building showing the different habitats that are present as part of the greater WHNC project. The linear water feature would give staff a way to show visitors some of those habitats.
- Collect water quality samples from the water feature pools and from Turtle pond, and compare the water quality in each, and to other samples from Westwood Lake.
- Discuss the importance of erosion control when viewing the controlled elevation drops through the linear water feature system.
- Note the variety of animals fairly close to the building as a result of the habitat provided by the linear water feature.

This concept would also provide added aesthetics to the north side of the building. Most of the maintenance for this option could be accomplished with volunteers. According to WHNC staff, they have a greater number of volunteers than they have activities for volunteers to help with.

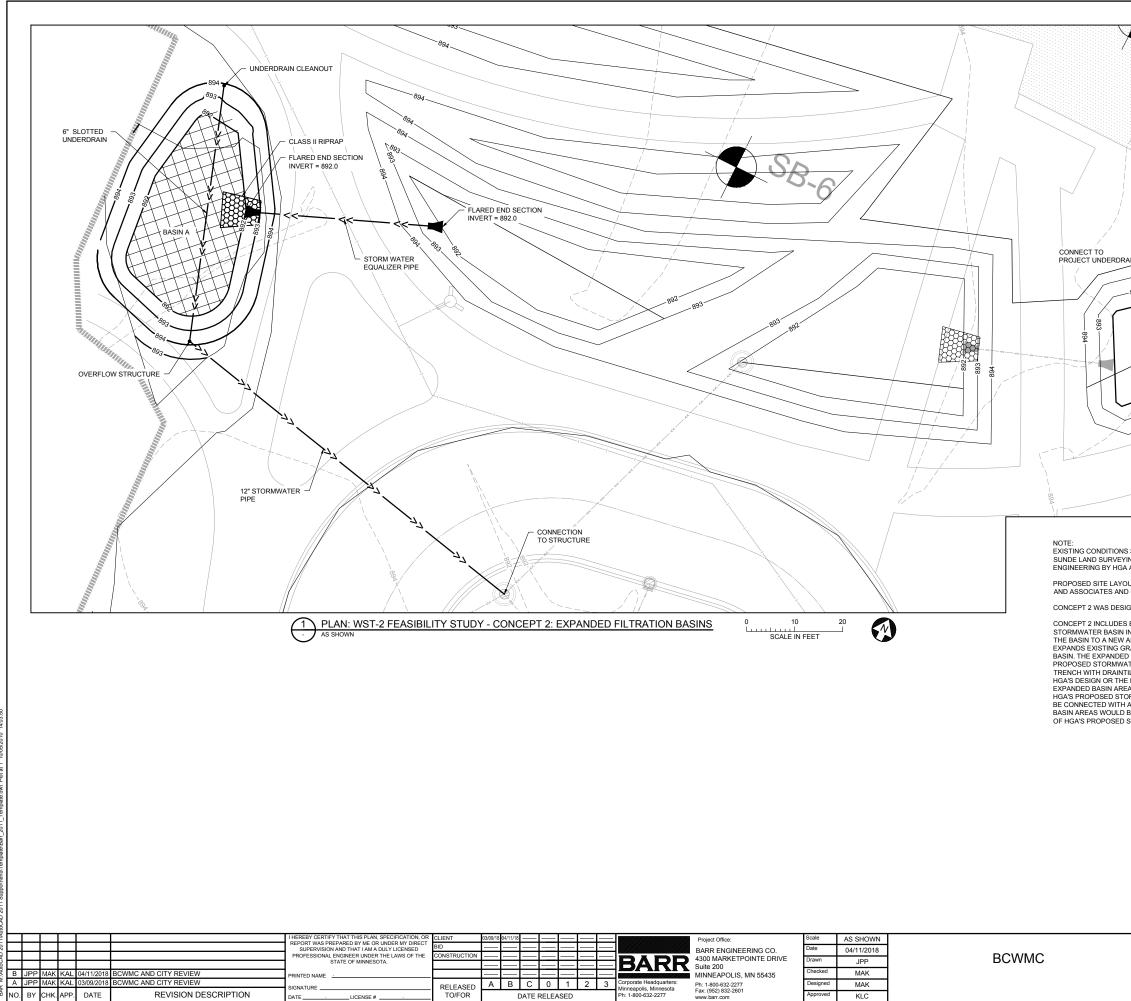

4.4 Concept 4 – Heated Sidewalks

Concept 4 includes installing heated sidewalks between the building and the parking lot. The location of the heated sidewalks is shown on Figure 4-4. Two systems were briefly evaluated for this concept. Circulating glycol was not deemed a practical option for this location as pump and heater locations would be required throughout the sidewalk area and heating would be uneven. An electrical system would be more effective with this layout, however annual electric costs would be greater than if a glycol system was installed. If heated sidewalks are the chosen concept, we recommend an electrical system; the concept 4 cost estimate in Table 6-1 is based on an electrical system. This option would require annual maintenance by a building maintenance engineer. Educational signage would be installed near the sidewalks explaining how the system works to improve water quality and why chlorides are harmful to aquatic resources.

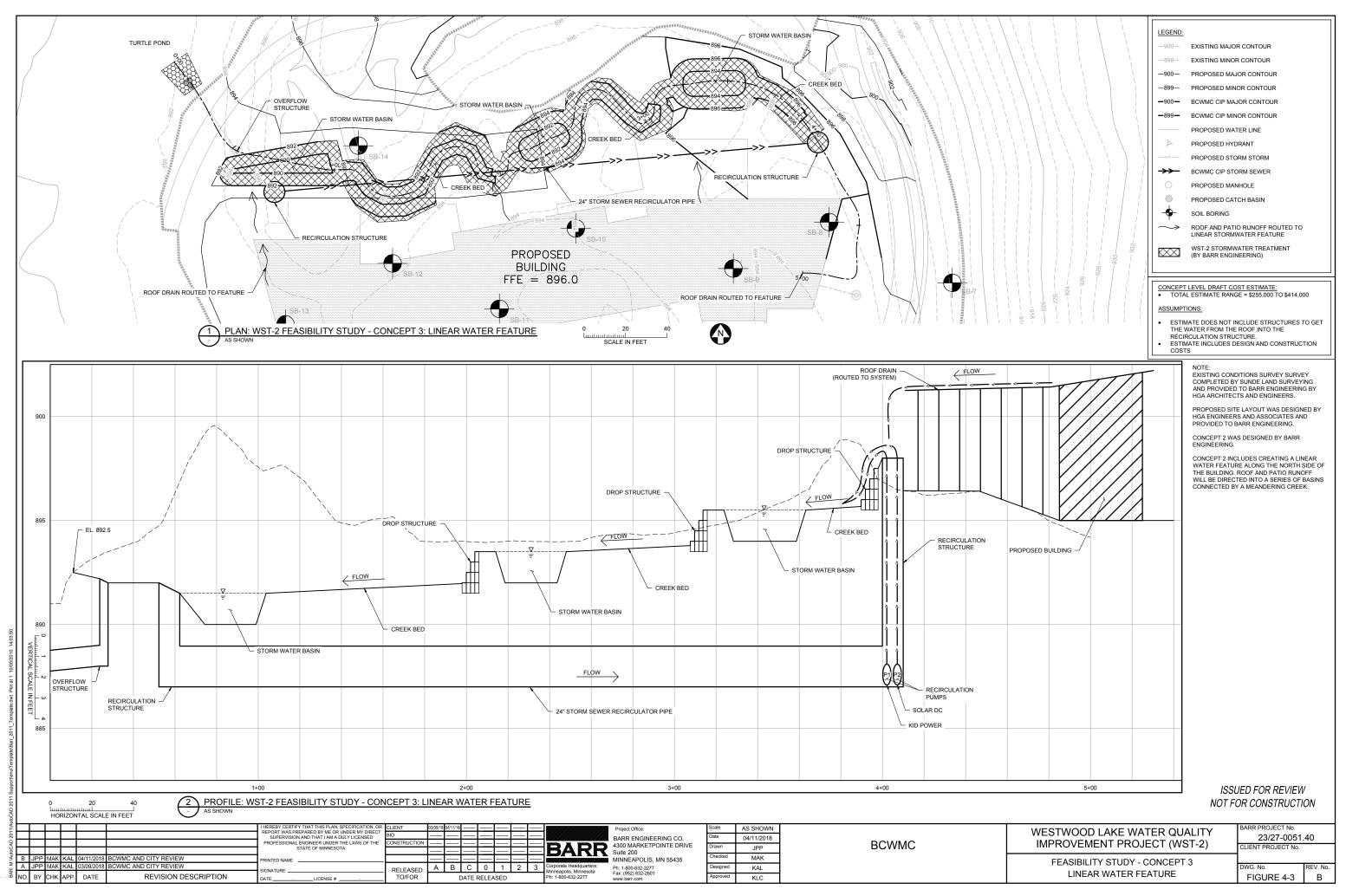

4.5 Concept 5 – Water Reuse

Concept 5 includes capturing stormwater runoff from the building roof and reusing the water for toilet flushing and possibly animal care. This option was considered by the WHNC design engineer/architect while designing the building, however was eliminated due to high costs. Water reuse inside the building would require treating the stormwater with filtration and disinfection prior to reuse, and permitting by the Minnesota Department of Health. If there are 36,000 visitors to the building annually, with an average of 1.5 gallons per flush, 1.5 flushes per person, the annual peak water demand would be 81,000 gallons. A 1.1-inch rainfall event would generate approximately 8,600 gallons of runoff from the 12,000 square foot building roof. Approximately nine 1.1-inch rainfall events would be required to meet the annual water demand. The total construction cost would depend on the amount of storage that is desired. The greater the amount of storage, the more demand could be met with reuse water rather than city water, but it is not feasible to install enough storage to meet the entire peak demand with reuse water. Daily number of visitors vary. Based on data from WHNC, we have assumed 200 average daily users for the water balance and storage calculation. The cost estimate for this report assumes 10,000 gallons of storage.

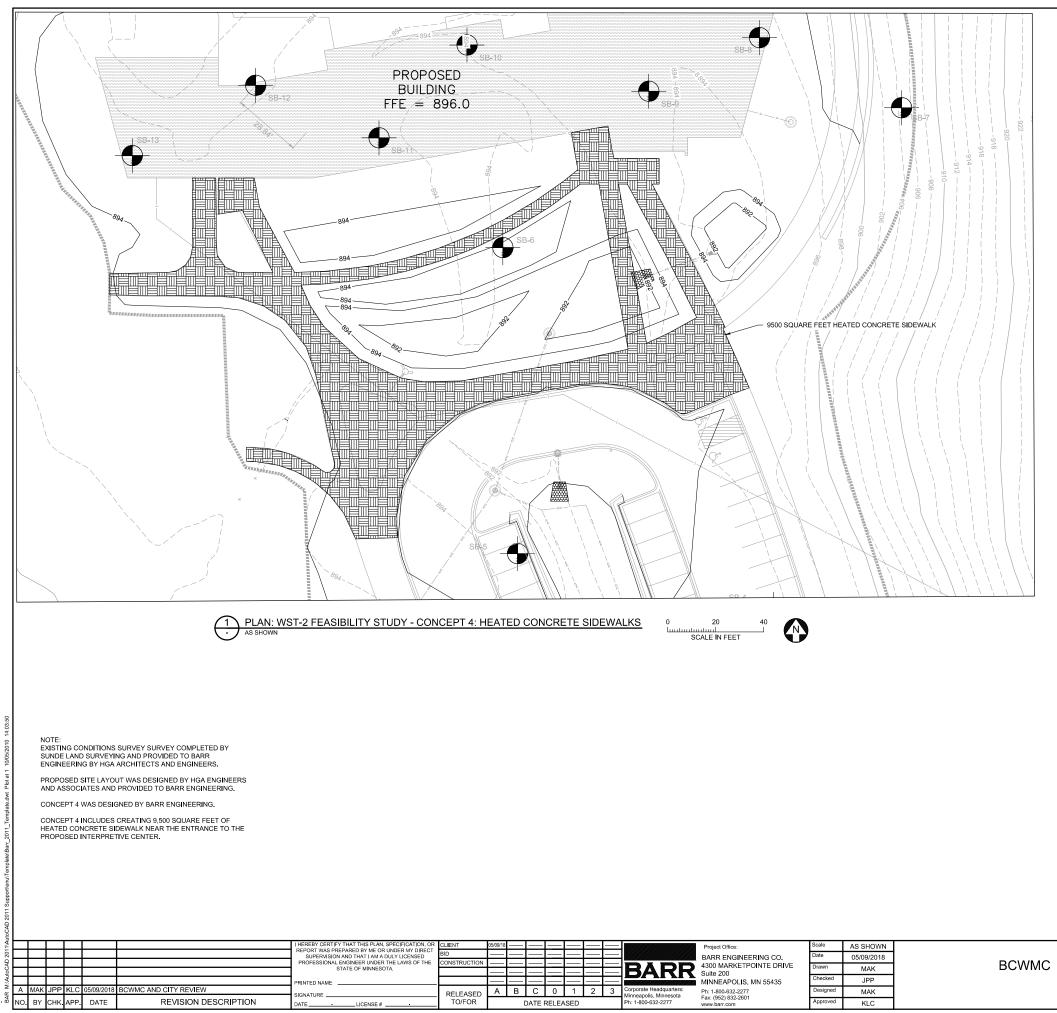
This option would require annual maintenance by a building maintenance engineer. Educational signage would be installed explaining how the system conserves water and improves water quality.



BCWMC


ISSUED FOR REVEIW NOT FOR CONSTRUCTION

WESTWOOD LAKE WATER QUALITY	BARR PROJECT No.	
	23/27-0051.	.40
IMPROVEMENT PROJECT (WST-2)	CLIENT PROJECT No.	
FEASIBILITY STUDY - CONCEPT 1		
	DWG. No.	REV. No.
ADDITIONAL PERMEABLE PAVERS	FIGURE 4-1	В



CADD USER: Josh Phillips FILE: M/IDESIGN/23270061 40/2327006140_CONCEPT_2.DWG PLOT SCALE: 1/2 PLOT DATE: 4/11/2018 5:33 PM

SS-9 1000 100 1000 1	5° SLOTTED UNDERDRAIN	-900 -900					
-893 BASIN B (EXPANSION)	est start						
NS SURVEY SURVEY COMPLETED BY YING AND PROVIDED TO BARR SA ARCHITECTS AND ENGINEERS. YOUT WAS DESIGNED BY HAG HOSINEERS. YOUT WAS DESIGNED BY HAG HOSINEERING. SIGNED BY BARR ENGINEERING. SIGNED BY BARR ENGINEERING. SIGNED BY BARR ENGINEERING. SIGNED BY BARR ENGINEERING. SIGNED BY BARR ENGINEERING.	LEGEND: -900- EXISTING MAJO -899- EXISTING MINOI -900- PROPOSED MA. -899- PROPOSED MINOI -900- BCWMC CIP MA -899- BCWMC CIP MINOI -900- PROPOSED MAINOI ->> BCWMC CIP STOIN ->> PROPOSED MAINOIN	R CONTOUR JOR CONTOUR OR CONTOUR JOR CONTOUR HOR CONTOUR TER LINE DRANT DRM STORM DRM SEWER WHOLE					
V AREA OF THE SITE, AND BASIN B GRADING ON THE WEST SIDE OF THE ED BASIN AREAS WOULD MATCH HGA'S VATER BASINS TO INCLUDE A GRANULAR TITLE. THE DRAINTLE WOULD TIE INTO HE PROPOSED STORM SEWER. THE REAS WOULD MATCH THE LEVATIONS TORMWATER BASIN AND BASIN A WOULD H AN EQUALIZED PIPE. THE EXPANDED D BE PLANTED TO MATCH THE PLANTINGS D STORMWATER BASIN.	PROPOSED CAT SOIL BORING WST-2 STORMM (BY BARR ENGIN	VATER TREATMENT					
	FABRICATED WITH KNC STORM SEWER. PLANTINGS SPACED 18 BOTTOM AND SIDE SLC	SE = \$47,000 TO \$76,000 WER STRUCTURES ARE DCKOUTS FOR BCWMC CIP I" O.C. IN BASINS, INCLUDING					
l		JED FOR REVIEW OR CONSTRUCTION					
IMPROVEMENT PROJE FEASIBILITY STUDY - C	WESTWOOD LAKE WATER QUALITY IMPROVEMENT PROJECT (WST-2) FEASIBILITY STUDY - CONCEPT 2 DWG. No. REV. NO.						
EXPANDED FILTRATION BASINS FIGURE 4-2 B							

CADD USER: Josh Phillips FILE: M:DESIGN123270051.402327005140_CONCEPT_3.DWG PLOT SCALE: 1:2 PLOT DATE: 4/11/2018 4:00

						I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT		05/09/18						Project Office:	Scale	AS SHOWN	
						SUPERVISION AND THAT I AM A DULY LICENSED	BID			I				BARR ENGINEERING CO.	Date	05/09/2018	
						PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	CONSTRUCTION						 DADD	4300 MARKETPOINTE DRIVE	Drawn	MAK	BCWMC
						STATE OF MINNESOTA.							 DARR	Suite 200			Bornino
						PRINTED NAME								MINNEAPOLIS, MN 55435	Checked	JPP	
Α	MAK	JPP	KLC	05/09/2018	BCWMC AND CITY REVIEW	SIGNATURE	RELEASED	Α	В	С	0 1	2	Corporate Headquarters:	Ph: 1-800-632-2277	Designed	MAK	
NO.	ΒY	снк.	APP.	DATE	REVISION DESCRIPTION	DATELICENSE #	TO/FOR		[DATE RE	LEASE	5	Minneapolis, Minnesota Ph: 1-800-632-2277	Fax: (952) 832-2601 www.barr.com	Approved	KLC	
																	·

LEGEND: -900 - EXISTING MAJOR CONTOUR -899 - EXISTING MINOR CONTOUR -900 - PROPOSED MAJOR CONTOUR -899 - PROPOSED MAJOR CONTOUR -899 - PROPOSED WATER LINE - PROPOSED WATER LINE - PROPOSED MANHOLE ● PROPOSED CATCH BASIN ● PROPOSED CATCH BASIN ● SOIL BORING WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING) BARR ENGINEERING) SOULD BARR ENGINEERING)						
-899- EXISTING MINOR CONTOUR -900- PROPOSED MAJOR CONTOUR -899- PROPOSED MINOR CONTOUR - PROPOSED MINOR CONTOUR - PROPOSED WATER LINE > PROPOSED STORM STORM ○ PROPOSED STORM STORM ○ PROPOSED CATCH BASIN ◆ SOIL BORING Immatrix WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING)	LEGEND:					
-900- PROPOSED MAJOR CONTOUR -899- PROPOSED MINOR CONTOUR PROPOSED WATER LINE PROPOSED HYDRANT → PROPOSED STORM STORM ○ PROPOSED STORM STORM ○ PROPOSED CATCH BASIN ◆ SOIL BORING WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING) ASSUMPTIONS: • SUBCUT AND COMMON EXCAVATION PROVIDED BY PROPOSED PROJECT AND NOT REQUIRED AS PART	-900-	EXISTING MAJOR CONTOUR				
−899− PROPOSED MINOR CONTOUR PROPOSED WATER LINE ▶ PROPOSED HYDRANT → PROPOSED STORM STORM ○ PROPOSED MANHOLE ◎ PROPOSED CATCH BASIN • SOIL BORING □ WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING) ▲ SUBCUT AND COMMON EXCAVATION PROVIDED BY PROPOSED PROJECT AND NOT REQUIRED AS PART	-899-	EXISTING MINOR CONTOUR				
→ PROPOSED WATER LINE → PROPOSED HYDRANT → PROPOSED STORM STORM ○ PROPOSED MANHOLE ● PROPOSED CATCH BASIN ◆ SOIL BORING WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING) BASSUMPTIONS: • SUBCUT AND COMMON EXCAVATION PROVIDED BY PROPOSED PROJECT AND NOT REQUIRED AS PART	-900-	PROPOSED MAJOR CONTOUR				
▶ PROPOSED HYDRANT ▶ PROPOSED STORM STORM ● PROPOSED MANHOLE ● PROPOSED CATCH BASIN ● SOIL BORING ● WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING) ■ ■ </td <td>-899-</td> <td>PROPOSED MINOR CONTOUR</td>	-899-	PROPOSED MINOR CONTOUR				
→ PROPOSED STORM STORM ● PROPOSED MANHOLE ● PROPOSED CATCH BASIN ● SOIL BORING WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING) WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING) ▲SSUMPTIONS: • SUBCUT AND COMMON EXCAVATION PROVIDED BY PROPOSED PROJECT AND NOT REQUIRED AS PART		PROPOSED WATER LINE				
O PROPOSED MANHOLE Image: Proposed catch basin Image: Proposed proposed proposed project and not required as part	þ	PROPOSED HYDRANT				
PROPOSED CATCH BASIN SOIL BORING SOIL BORING WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING) SUBCUT AND COMMON EXCAVATION PROVIDED BY PROPOSED PROJECT AND NOT REQUIRED AS PART		PROPOSED STORM STORM				
SOIL BORING SOIL BORING WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING) SUBCUT AND COMMON EXCAVATION PROVIDED BY PROPOSED PROJECT AND NOT REQUIRED AS PART	0	PROPOSED MANHOLE				
WST-2 HEATED CONCRETE SIDEWALK (BY BARR ENGINEERING) ASSUMPTIONS: SUBCUT AND COMMON EXCAVATION PROVIDED BY PROPOSED PROJECT AND NOT REQUIRED AS PART		PROPOSED CATCH BASIN				
(BY BARR ENGINEERING) ASSUMPTIONS: SUBCUT AND COMMON EXCAVATION PROVIDED BY PROPOSED PROJECT AND NOT REQUIRED AS PART	-\$ -	SOIL BORING				
SUBCUT AND COMMON EXCAVATION PROVIDED BY PROPOSED PROJECT AND NOT REQUIRED AS PART						
SUBCUT AND COMMON EXCAVATION PROVIDED BY PROPOSED PROJECT AND NOT REQUIRED AS PART						
PROPOSED PROJECT AND NOT REQUIRED AS PART	ASSUMPT	IONS:				

ISSUED FOR REVEIW NOT FOR CONSTRUCTION

WESTWOOD LAKE WATER QUALITY	BARR PROJECT No.	
	23/27-0051	.40
IMPROVEMENT PROJECT (WST-2)	CLIENT PROJECT No.	
FEASIBILITY STUDY - CONCEPT 4		
	DWG. No.	REV. No.
HEATED CONCRETE SIDEWALKS	FIGURE 4-4	Α

Water Quality Impacts 5.0

This section discusses impacts of the Westwood Lake Water Quality Improvement Project, including estimated pollutant reductions resulting from each alternative. The MIDS Calculator was used to evaluate anticipated pollutant removals for Concept 1 and Concept 2. A water balance spreadsheet was used to evaluate anticipated pollutant removals for Concepts 3 and 5. Concept 4 will not remove TSS or TP loading. The same concentrations of TSS and TP loading was applied to both the MIDS Calculator evaluation and the water balance spreadsheet calculations. Table 5-1 summarizes the results from each alternative.

Table 5-1 Estimated Annual TSS and TP Removals for Concepts 1 – 5								
Alternative	Estimated TSS Removal (pounds/year)	Estimated TP Removal (pounds/year)						
Concept 1 – Additional Permeable Pavers	39.5	0.171						
Concept 2 – Expand Filtration Basins	0.7	0.004						
Concept 3 – Linear Water Feature	59.9	0.330						
Concept 4 – Heated Sidewalk	0	0						
Concept 5 – Water Reuse	59.3	0.326						

6.0 Project Cost Considerations

This section presents a feasibility level opinion of cost of the evaluated concepts, discusses potential funding sources, and provides an approximate project schedule.

6.1 **Opinion of cost**

The opinion of cost is a Class 4 feasibility-level cost estimate as defined by the American Association of Cost Engineers International (AACI International) and uses the assumptions listed below and detailed in the following sections.

- 1. The cost estimate assumes a 30% construction contingency.
- 2. Costs associated with design, permitting, and construction observation (collectively "engineering") is assumed to be 30% of the estimated construction costs (excluding contingency).
- 3. Additional work may be required to determine if cultural and/or historical resources are present at any project site.

The Class 4 level cost estimates have an acceptable range of between -15% to -30% on the low range and +20% to +50% on the high range. Based on the development of concepts and initial vetting of the

concepts by the City of St. Louis Park, it is not necessary to utilize the full range of the acceptable range for the cost estimate; and we assume the final costs of construction may be between -20% and +30% of the estimated construction budget. The assumed contingency for the project (30%) incorporates the potential high end of the cost estimate range.

The estimated capital and a range of 20-year to 35-year annualized costs for each alternative are summarized in Table 6-1. Detailed cost-estimate tables for all concepts considered are provided in Appendix C.

6.2 Concept 3 Potential Cost Reduction

Based on comments received at the April 19, 2018 Commission meeting, we further analyzed concept 3 for possible cost reductions from the cost estimate shown in Appendix C. There are three basins shown in the linear water feature concept. The number of basins could be reduced to two, or the basins could be reduced in size for some cost savings. This will reduce line item D in the cost estimate, which is currently \$90,000. Cost savings could be up to \$10,000 with a basin area reduction. The remaining line items are necessary for the function of the concept and no other cost savings options were identified. Table 6-1 shows the concept 3 cost estimate without the potential cost reduction. With the cost reduction, the total cost would reduce from \$351,000 to \$334,000.

6.3 Funding Sources

This project is slated to receive funding through the BCWMC's Capital Improvement Program. The source of these funds is an ad valorem tax levied by Hennepin County over the entire Bassett Creek watershed on behalf of the BCWMC.

6.4 Project Schedule

For project construction to occur in 2019, project design would be completed 2018. The BCWMC is scheduled to hold a public hearing, order the project, certify levy costs to Hennepin County, and enter into an agreement with the City of St. Louis Park at its meeting on September 20, 2018. The City of St. Louis Park is currently preparing the final design.

Table 6-1	Estimate	d Capital and A	nnualized Costs for Con	cepts 1 – 5				
Alternative	Construction Cost	Construction Contingency ¹	Planning, Engineering, Design, and Construction Observation ²	Total Cost	Estimated TSS Removal (lbs/year)	Estimated Annualized Cost per Pound of TSS Removal (\$/Ib TSS/year) ³	Estimated TP Removal (Ibs/year)	Estimated Annualized Cost per Pound of TP Removal (\$/Ib TP/year) ³
Concept 1 – Additional Permeable Pavers	\$101,000	\$30,000	\$39,000	\$170,000	39.5	\$260 - \$340	0.171	\$59,060 - \$78,950
Concept 2 – Expand Filtration Basins	\$37,000	\$11,000	\$14,000	\$62,000	0.7	\$5,290 - \$7,140	0.004	\$925,000 - \$1,250,000
Concepts 1 plus Concept 2	\$138,000	\$41,000	\$53,000	\$232,000	40.2	\$440 - \$580	0.175	\$100,570 - \$133,710
Concept 3 – Linear Water Feature	\$208,000	\$62,000	\$81,000	\$351,000	59.9	\$350 - \$470	0.330	\$63,380 - \$84,610
Concept 4 – Heated Sidewalk	\$151,000	\$45,000	\$59,000	\$255,000	0	n/a	0	n/a
Concept 5 – Water Reuse	\$174,000	\$52,000	\$68,000	\$294,000	59.3	\$300 - \$390	0.326	\$53,680 - \$71,470

ble 6-1 Estimated Capital and Ann	ualized Costs for Concepts 1 – 5
-----------------------------------	----------------------------------

Assumed 30% contingency based on feasibility-level design (Class 4, 10-15% design completion per ASTM E 2516-06). (1)

(2) Assumed 30% of construction cost for Engineering, Design, and Construction Observation.

Assumed 4% interest rate and 20-year to 35-year lifespan. (3)

7.0 Permitting, Site Impacts, and Coordination

This section discusses permitting and coordination required for each alternative.

7.1 Permitting

No disturbance or fill of any wetlands, nor any work in public waters is anticipated as part of the WHNC reconstruction project. The City of St. Louis Park and its contractors will be responsible for any permits required by the WHNC reconstruction project. No additional permits are anticipated as part of the Westwood Lake Water Quality Improvement Project.

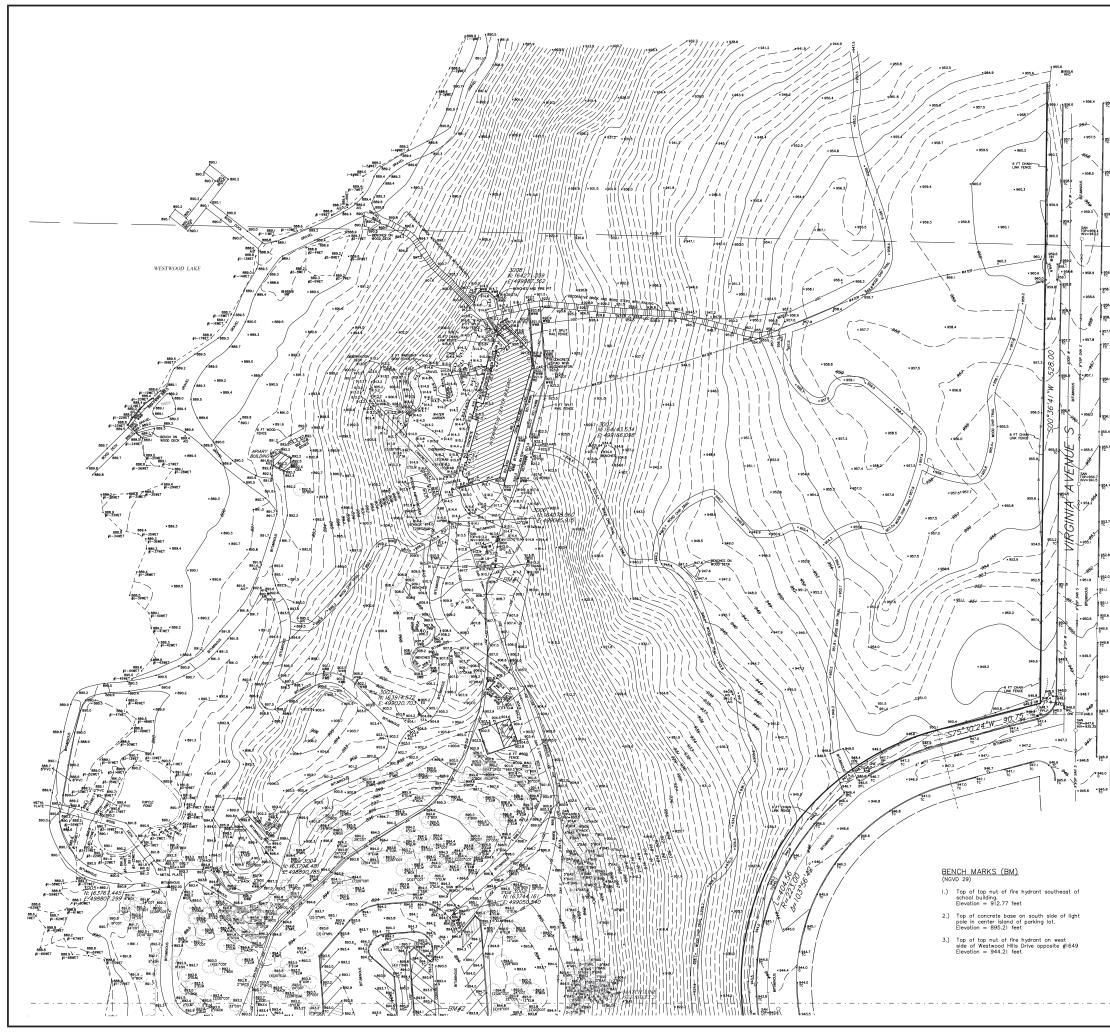
7.2 Site Impacts

Some tree removals are anticipated as part of the WHNC reconstruction project. Minimal additional tree removals and no additional site impacts are anticipated for the Westwood Lake Water Quality Improvement Project.

7.3 Coordination

Trail usage and pedestrian safety during construction is a significant consideration for the WHNC reconstruction project. The interpretive center and some nearby paths and trails will be closed during construction, but most WHNC paths and trails will remain open. Trail closure signs and barricades will be installed and a pedestrian detour route will be determined during final construction. The parking lot will also be closed during construction and the existing park entrance drive will be used for construction access. Minimal additional path and trail closures are anticipated as part of the Westwood Lake Water Quality Improvement Project. Continued coordination with the City of St. Louis Park's Parks and Recreation Department will be required during final design.

8.0 **Recommendations**


The Commission Engineer recommends Concept 3 – Linear Water Feature due to water quality improvement, education, cost effectiveness, and aesthetic possibilities. We recommend that the opinions of cost identified in this study be used to develop a levy request for the selected concept(s) and that the concept(s) proceeds to the design and construction phase.

9.0 References

1. **Bassett Creek Watershed Management Commission.** 2015 Watershed Management Plan. September 2015. 2. **Bassett Creek Watershed Management Commission.** 2015 Lake Water Quality Study, Westwood Lake, January 2016.

Appendix A

Westwood Hills Nature Center Site Topographic and Tree Survey

DESCRIPTION OF PROPERTY SURVEYED Part of Outlot I, Westwood Estates 2nd Addition, and part of Lot I, Block I, Westwood Estates, according to the recorded plats thereof, and part of the Southeast Quarter of Section 6, Township 117, Range 21, Hennepin County, Minnesota.

TITLE COMMITMENT

This survey was prepared without the benefit of current title work. Easements, appurtenances, and encumbrances may exist in addition to those shown hereon. This survey is subject to revision upon receipt of a current title insurance commitment or attorney's title ophion.

GENERAL NOTES

- I.) Survey coordinate and bearing basis: Hennepin County Coordinates
- 2.) Wetlands shown hereon are per delineation markers observed in the process of conducting the fieldwork.
- 3.) Property is subject to Resolution Granting Conditional Use Permit per Document No. A10408790.

UTILITY NOTES

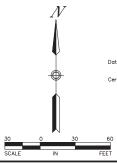
- Utility information from plans and markings was combined with observed evidence of utilities to develop a view of the underground utilities shown hereon. However, lacking excevation, the exact location of underground features cannot be accurately, completely and reliably depicted. Where additional or more detailed information is required, excevation and/or a private utility locate request may be necessary.
- 2.) Other underground utilities of which we are unaware may exist. Verify all utilities critical to construction or design.
- Contact GOPHER STATE ONE CALL at 651-454-0002 (800-252-1166) for precise onsite location of utilities prior to any excavation.

LEGEND

AIS BE	Denotes Denotes	advertising/information sign building entrance bike rack
BR	Denotes	bike rack
BRIG BTL	Denotes	bridge beavertail curb
CB	Denotes	catch basin
CBOX	Denotes	control box
CBX	Denotes	communication box
CC	Denotes	curb cut
CDS CIP	Denotes	curo cut civil defense siren cast iron pipe building column
COL	Denotes	building column
CONC CS	Denotes	concrete
CS	Denotes	curb stop
DIP	Denotes	ductile iron pipe
EB EM	Denotes	electric box electric meter
EO	Denotes	electric outlet gutter
G	Denotes	gutter
GDCR GM	Denotes	gate card reader
	Denotes	gas meter ground light
	Denotes	guv wire
HCR	Denotes	guy wire disabled ramp disabled sign
HCS	Denotes	disabled sign
НН ННС	Denotes	hand hole
HHF	Denotes	fiber ontic hand hole
HYD	Denotes	fire hydrant
INV	Denotes	rong hole communication hand hole fiber optic hand hole fire hydrant structure invert keystone wall base
KWB LP	Denotes	keystone wall base
MB	Denotes	light pole mail box
MG	Denotes	metal arate
MOWELL	Denotes	monitoring well
OD	Denotes	metal grate monitoring well overhead door overhead electric line
OHE	Denotes	overhead electric line
(P) PEP	Denotes	per plan
	Denotes	polyethylene pipe parking sign
PP	Denotes	parking sign power pole power and light pole power pole with underground utility power pole with underground utility polywitathioride pipe reinforced concrete pipe reinforced
PPLP	Denotes	power and light pole
PP I PPU	Denotes	power pole with transformer
PTBL	Denotes	picnic table
PVC	Denotes	polyvinylchloride pipe
RCP	Denotes	reinforced concrete pipe
RD SAN	Denotes	remorced concrete pipe roof drain sanitary manhole sanitary sewer sanitary cleanout
SAN S	Denotes	sanitary mannole
SAN S SANC	Denotes	sanitary cleanout
SPG ST S	Denotes	spigot storm sewer
STA	Denotes	storm sewer
SWB	Denotes	storm sever survey control station stone wall base traffic control sign transformer underground communication line underground communication line
TC	Denotes	top of concrete curb
TCS	Denotes	traffic control sign
TRANS UGC	Denotes	transformer
UGE	Denotes	underground electric line
UGE VSP	Denotes	vitrified sewer pipe water line
w	Denotes	water line
WAF WET	Denotes	drinking fountain wetland stake
WEI WST	Denotes	wettana stake wood step
WV	Denotes	wood step water valve wood wall base
WWB	Denotes	wood wall base
BAS BIR	Denotes	Basswood tree Birch tree
BOX	Denotes	Boyelder tree
CED	Denotes	Coldar tree Cottonwood tree Crabaple tree Hackberry tree
COT	Denotes	Cottonwood tree
HACK	Denotes	Grabapple tree
LOC	Denotes	Locust tree
MPL	Denotes	Maple tree
PIN	Denotes	Pine tree
PINW POP	Denotes	White Pine tree Poplar tree
POP SPCG	Denotes	Colorado Green Spruce tree
SPR	Denotes	Colorado Green Spruce tree Spruce tree
TR	Denotes	deciduous tree
	l hereb	y certify that this survey, plan, or report wa d by me or under my direct supervision and am a duly Licensed Land Surveyor under the the State of Minnesota.

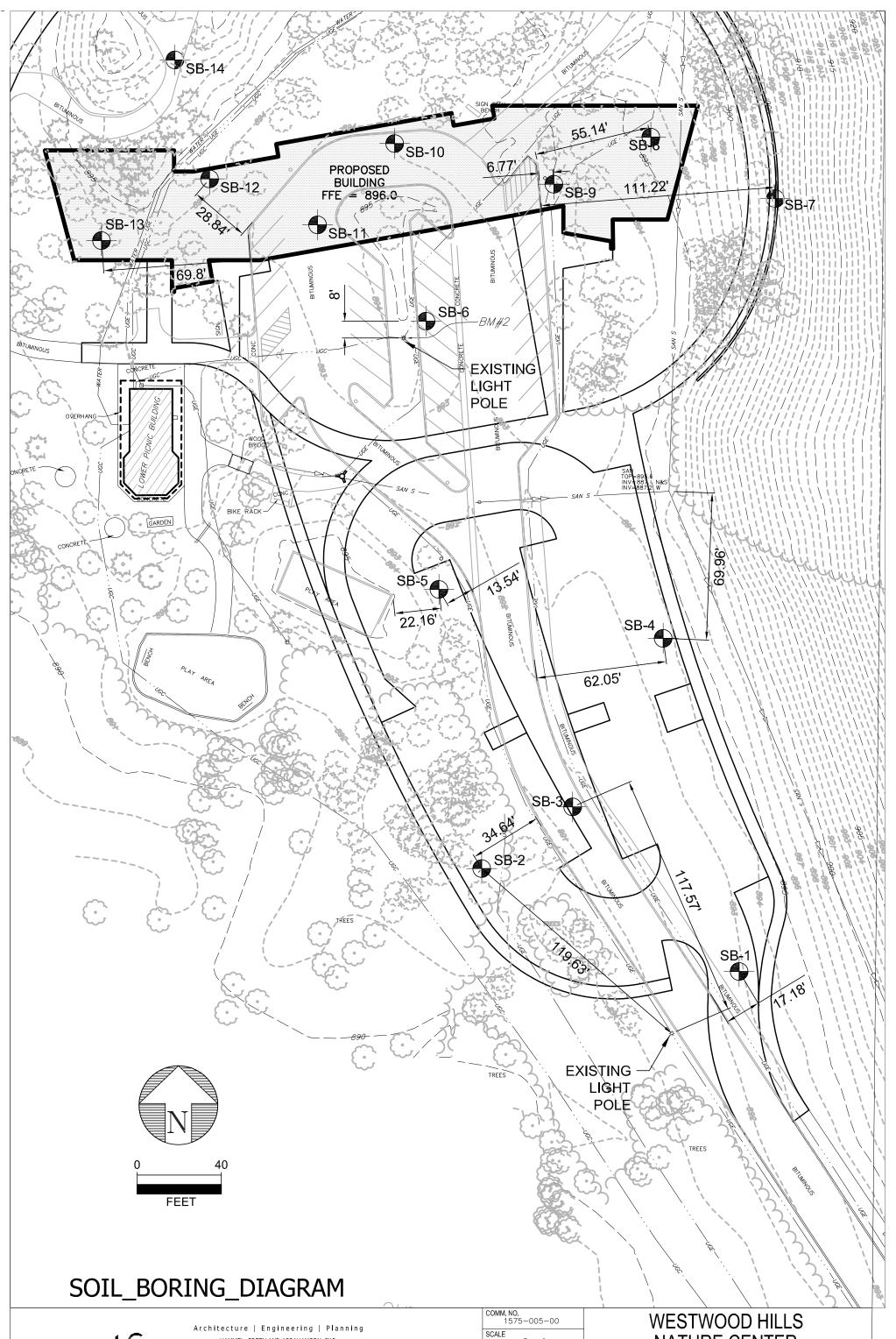
Dated this 6th day of December, 2017 SUNDE LAND SURVEYING, LLC,

SUNDE LAND SURVEYING, LLC. By: <u>Allee J. Callon</u> Arlee J. Carlson, P.L.S. Minn. Lic. No. 44900



AIS	Denotes	advertising/information sign
BE	Denotes	building entrance bike rack bridge
3R	Denotes	bike rack
BRIG	Denotes	bridge
311.	Denotes	beavertail curb
CB	Denotes	catch basin control box
CBX	Denotes	communication box
CDS	Denotes	civil defense siren
CIP	Denotes	cast iron pine
COL	Denotes	curb cut civil defense siren cast iron pipe building column
CS	Denotes	ductile iron pipe electric box
DIP	Denotes	ductile iron pipe
в	Denotes	electric box
M	Denotes	electric meter electric outlet
3	Denotes	electric outlet
GDCR	Denotes	gate card reader
SM	Denotes	aas meter
GRDL	Denotes	gate card reader gas meter ground light
GW	Denotes	guy wire
HCR	Denotes	disabled ramp
ICS	Denotes	disabled sign
HH III	Denotes	hand hole
HC	Denotes	ground light guy wire disabled ramp disabled sign hand hole communication hand hole fiber antic hand hole
HHF HYD	Denotes	fiber optic hand hole fire hydrant structure invert keystone woll base light pole mai box
NV	Denotes	structure invert
(WB	Denotes	keystone wall base
P	Denotes	light pole
ИB	Denotes	mail box
//G	Denotes	metal grate monitoring well overhead door overhead electric line
MOWELL	Denotes	monitoring well
DD	Denotes	overhead door
DHE	Denotes	overhead electric line
P) PEP	Denotes	per plan polyethylene pipe parking sign
PKS	Denotes	polyethylene pipe
PP	Denotes	parking sign
PPLP	Denotes	power and light note
PPT	Denotes	power pole with transformer
PPU	Denotes	power pole with underground utility
PTBL	Denotes	power pole power and light pole power pole with transformer power pole with underground utility picnic table
PVC	Denotes	polyvinylchloride pipe reinforced concrete pipe
RCP	Denotes	reinforced concrete pipe
RD SAN	Denotes	roof drain
SAN S	Denotes	sanitary manhole sanitary sewer sanitary cleanout
SANC	Denotes	sonitory sewer
SMH	Denotes	storm manhole
SPG	Denotes	storm manhole spigot
STS	Denotes	storm sewer
STA	Denotes	storm sewer survey control station stone wall base top of concrete curb
SWB	Denotes	stone wall base
TC .	Denotes	top of concrete curb
FCS FRANS	Denotes	traffic control sign transformer
COANI	Denotes	underground communication Van
JGC JGE	Denotes	underground communication line underground electric line vitrified sewer pipe
VSP	Denotes	vitrified sewer pipe
WAF	Denotes	drinking fountain
NET	Denotes	drinking fountain wetland stake
WST	Denotes	wood step water valve wood wall base
WV_	Denotes	water valve
WWB	Denotes	wood wall base
	Dente	December of Anna
BAS BIR	Denotes	Basswood tree Birch tree
30X	Denotes	Boxelder tree
CED	Denotes	Cedar tree
	Denotes	Cedar tree Cottonwood tree
COT	Denotes	Crabapple tree
COT CRAB	Denotes	Crabapple tree Hackberry tree
COT CRAB HACK		Locuet tree
CRAB HACK OC	Denotes	
CRAB HACK OC	Denotes	Maple tree
CRAB HACK LOC MPL PIN	Denotes Denotes	Maple tree
CRAB HACK LOC MPL PIN	Denotes Denotes	Maple tree
CRAB HACK LOC MPL PIN	Denotes Denotes	Maple tree
CRAB HACK LOC WPL PIN PINW POP SPCG	Denotes Denotes Denotes Denotes Denotes Denotes	Waple tree Pine tree White Pine tree Poplar tree Colorado Green Spruce tree Spruce tree deciduous tree

POINT NUMBER	NORTHING	EASTING	ELEVATION	DESCRIPTION
3000 3001 3002 3003 3004 3005 3006 3007 3008	163529.824 163555.536 163744.161 163914.572 163796.481 163767.445 164078.060 164143.534 164271.359	499078.518 498866.582 499050.540 499020.703 498890.185 498807.299 499045.915 499166.098 499087.362	892.77 892.27 894.77 904.69 898.46 892.00 913.80 931.64 916.35	Station Station Station Station Station Station Station Station
3009	163317.503	499203.883	894.61	Station



Dated this 6th day of December, 2017 Certified by: Arlee J. Carlon, P.L.S. Minn. Lic. No. 44900

Appendix B

Soil Borings

ha

Architecture | Engineering | Planning HAMMEL, GREEN AND ABRAHAMSON, INC. 4205th Street North - Suite 100 Minneapolis, Minnesota 55401 Telephone 612.758.4000 Facsimile 612.758.4199

COMM.NO. 1575-005-00	
SCALE 1"=40'	
DATE 12/18/2017	
DRAWN EH/DKS	

WESTWOOD HILLS NATURE CENTER 8300 W FRANKLIN AVENUE ST. LOUIS PARK, MN 55426

SUBSURFACE BORING LOG

Project: Westwood Hills Nature Center; St. Louis Park, MN DEPTH IN FEET Surface Elevation 893.4 MATERIAL DESCRIPTION GEOLOGY IN N MC SAMPLE TYPE REC IN FILD & LABORATORY FILL, mostly clayey sand, a little gravel, trace roots, dark brown, frozen to 2' FILL F SU I I I 2 - Sample RE SU I I I 3 - Sample RE SU I I I 4 - SAPRIC PEAT, black, laminations of sand (PT) SWAMP DEPOSIT SWAMP DEPOSIT S M SS 18 I I I 6 -	
Surface Elevation ODDAT GEOLOGY N MC SAMPLE REC WC DEN LL PL 1 - FILL, mostly clayey sand, a little gravel, trace roots, dark brown, frozen to 2' FILL F SU Image: Surface roots, dark brown, frozen to 2' F SU Image: Surface roots, dark brown, frozen to 2' F SU Image: Surface roots, dark brown, frozen to 2' F SU Image: Surface roots, dark brown, frozen to 2' F SU Image: Surface roots, dark brown, frozen to 2' Image: Sufface roots, dark brown, frozen to 2' Image: Sufface roots, sufface roots, dark brown, frozen to 2' Image: Sufface roots,	
FILL WC DEN LL IL	-#20
1 - roots, dark brown, frozen to 2' F SU 2 - 3 - 8 M SS 16 4 - 5 SAPRIC PEAT, black, laminations of sand (PT) SWAMP SS 16 6 - See SWAMP SS 18 7 - CLAYEY SAND, trace rootsdark gray, moist, soft, laminations of sand (SC) MIXED ALLUVIUM 4 M SS 22 9 - 10 - Image: State of the	
2 - 3 - 8 M SS 16 4 - 5 SAPRIC PEAT, black, laminations of sand (PT) SWAMP 5 M SS 18 6 - Set SWAMP 5 M SS 18 7 - CLAYEY SAND, trace rootsdark gray, moist, soft, laminations of sand (SC) MIXED ALLUVIUM 4 M SS 22 9 - 10 - Image: Set of the set	
3 - 8 M SS 16 4 - 5 SAPRIC PEAT, black, laminations of sand (PT) SWAMP DEPOSIT 5 M SS 18 6 - •	
4 - SAPRIC PEAT, black, laminations of sand (PT) SWAMP DEPOSIT 5 - SAPRIC PEAT, black, laminations of sand (PT) SWAMP DEPOSIT 6 - SWAMP DEPOSIT SS 7 - CLAYEY SAND, trace rootsdark gray, moist, soft, laminations of sand (SC) MIXED ALLUVIUM 8 - SS 22 9 - Image: Simple state sta	
$5 - SAPRIC PEAT, black, laminations of sand (PT) 6 - SAPRIC PEAT, black, laminations of sand (PT) 5 - SWAMP \\ DEPOSIT \\ SSS 18 \\ R \\ SSS 18 \\ R \\ SSS 18 \\ R \\ SSS 22 \\ P - \\ 10 - \\ R \\ R \\ SS 22 \\ R \\ SS 22 \\ R \\ R \\ R \\ SS 22 \\ R \\ R \\ R \\ SS 22 \\ R \\ R \\ R \\ SS 22 \\ R \\ R \\ R \\ R \\ R \\ SS 22 \\ R \\ R \\ R \\ R \\ SS 22 \\ R \\ R \\ R \\ R \\ SS 22 \\ R \\ R \\ R \\ R \\ R \\ R \\ SS 22 \\ R $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$7 - \frac{1}{CLAYEY SAND, trace rootsdark gray, moist, soft, laminations of sand (SC)} = 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -$	
$\begin{bmatrix} 8 \\ 9 \\ 10 \\ - \end{bmatrix}$	
$\begin{bmatrix} 8 - \\ 9 - \\ 10 - \end{bmatrix}$ $\begin{bmatrix} 4 \\ M \\ \blacksquare \\ \blacksquare$	
12 - SILT, trace roots, gray, wet, loose, laminations	
13 = 31217, trace roots, gray, wet, roots, failmations 1100 ALLUVIUM 5 W 3 SS 20 30	
15 – SILTY SAND, fine to medium grained, gray, wet, loose (SM)	
16 - 5 W A SS 16	
END OF BORING	
DEPTH: DRILLING METHOD VATER LEVEL MEASUREMENTS NOTE: REFE 0-14½' 3.25" HSA DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER LEVEL MEASUREMENTS NOTE: REFE 0-14½' 3.25" HSA DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER LEVEL NOTE: REFE 1/26/18 10:30 11.5 9.5 9.6 9.5 SHEETS FOR BORING COMPLETED: 1/26/18 10:35 11.5 9.5 9.6 9.3 EXPLANATION	
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFE	ТО
0-14 ¹ / ₂ ' 3.25" HSA DATE TIME SAMPLED CASING DEPTH DEPTH DEPTH DEPTH DEPTH FLUID LEVEL THE ATTAC	ED
1/26/18 10:30 11.5 9.5 9.6 9.5 SHEETS FOR 1/26/12 10.27 11.7 0.7 0.6 0.2 EXPLANATION	
1/26/18 10:35 11.5 9.5 9.6 9.3 EXPLANATION BORING 1/26/18 10:35 11.5 9.5 9.6 9.3 EXPLANATION	
COMPLETED: 1/26/18 THIS LOC DR: TA LG: SB Rig: 69C THIS LOC	OF

01-DHR-060

ENGINEERING TESTING, INC.

SUBSURFACE BORING LOG

AET N	No: 01-07434			L	og of	Boı	ring No	o	B-2A (p. 1 of 1)						
Projec	t: Westwood Hills	Nature Cer	nter; St. 1	Louis P	ark, MN										
DEPTH	Surface Elevation	891.4	891.4 GI				MC	SA	MPLE	REC	FIELI) & LA	ABORATORY		TEST
IN FEET		L DESCRIPTIC				N	INIC	SAMPLI TYPE		IN.	WC	DEN	LL	PL	%- #2
1 —	FILL, mostly clayey sand brown, frozen to 2'	l, a little grav	el, dark		FILL		F		SU						
2 — 3 —	FILL, mixture of silty sat a little gravel, trace roots	nd and sandy , brown and l	lean clay black	,		8	М	R	SS	20					
4 — 5 —	HEMIC PEAT, dark bro	wn (PT)		<u></u>	SWAMP DEPOSIT			<u>₹</u>	00	16					
6 -						7	M		SS	16					
7 — 8 —	SAPRIC PEAT, with sh light brown (PT)	ells, dark bro	own to	<u></u>		2	М		SS	24					
9 —			-					सि							
10 —	BOGLIME, trace shells	and roots wh	ite		5	1	M	\mathbb{N}	SS	24					
11 -	(OH-OL)	and roots, wh	lite	<u></u>			Ţ	 स							
12 —	SILTY SAND WITH G	RAVEL, fine	to mediu	n []]	COARSE	-		ł							
13 — 14 —	grained, gray, wet, loose				ALLUVIUM	7	W	X	SS	16					
	END OF BORING														
DEP 0-12		DATE	TIME	WATI SAMPI DEPT	ER LEVEL MEA ED CASING H DEPTH		EMEN ZE-IN PTH	1	DRILLIN UID LE	NG VEL	WATE	ER	NOTE: THE A	TTAC	HEL
		1/26/18	9:20	14.5			2.5				12.0	<u> </u>	SHEET		
BORIN	G LETED: 1/26/18	1/26/18	9:25	14.5	5 12.5		2.5	-			11.6	,	XPLA1 ERMIN		
Dorun	ETED. 1/76/19	1		1	1	1						1 **		- 200	

SUBSURFACE BORING LOG

AET N	No: 01-07434		Lo	og of	Bo	ring N	o	E	B-3 A	(p. 1	of 1)				
Project	t: Westwood Hills N	Nature Cei	nter; St. I	Louis F	Park, MN										
EPTH	Surface Elevation	890.7			GEOLOGY			SA	MPLE	REC	FIELI) & LA	BORA	FORY	TEST
IN FEET	MATERIAL I	DESCRIPTIC	DN		GLOLOGI	N	MC		TYPE	IN.	WC	DEN	LL	PL	% -#
1 -	FILL, mostly clayey sand v little graavel, trace roots, d 2'	with organic ark brown,	c fines, a frozen to		FILL		F		SU						
2 — 3 —	FILL, mixture of clayey sa little gravel, light brown ar	nd and silty nd dark brow	v sand, a wn			9	М		SS	18					
4 5	HEMIC PEAT, black (PT)	1		<u>- 117</u>	SWAMP DEPOSIT	7		₽	SS	24					
6 — 7 —	HEMIC PEAT, with shell	s block (P)	Г)				_	ति स	55	27					
8 — 9 —	TIEMIC FEAT, with shell	s, diack (r l	I)	<u></u>		WH	W		SS	20					
10 -	BOGLIME WITH SILT, tr gray, wet (OH)	race shells,	white and			WH	w	X	ss	24					
11 — 12 —					9			/\ {}							
13 — 14 —						WH	w		SS	24					
15 — 16 —	SILT, a little gravel, trace r loose, laminations of silty		wet, very		MIXED ALLUVIUM	- 2	w	$\left \right $	SS	20	35				
17 — 18 —	LEAN CLAY, gray, soft (CL)			FINE ALLUVIUM	- 3	W	R	SS	20	34				
19 —	CLAYEY SAND, a little g SAND, fine to medium gra		. ,		MIXED ALLUVIUM COARSE			ति स्र	00	20	17				
20 — 21 —	waterbearing, very loose to		ALLUVIUM	WH	W		ss	2							
22 — 23 —						7	w		SS	20					
24 —	END OF BORING			<u> </u>				\uparrow							+
DEP	TH: DRILLING METHOD			1	ER LEVEL ME			1	איז ווסר	JG	WATI		NOTE:		
0-22	2½' 3.25" HSA	DATE	TIME	SAMPI DEPT		_	'E-IN PTH	FL	ORILLIN UID LE	VEL	WATH LEVE		THE A		
		1/26/18	9:50	9.0		-	.0				6.5		SHEET		
DOBBY	0	1/26/18	9;55	9.0	7.0	7	.0				6.0		XPLA		
BORINO COMPL	G LETED: 1/26/18											T	ERMIN		
DR: TA	A LG: SB Rig: 69C									T			TH	IS LO	G

SUBSURFACE BORING LOG

AET No: 01-07434			L	og of	Bo	ring N	o	B-4 (p. 1 of 1)							
Projec	t: Westwood Hills N	Nature Ce	nter; St. I	Louis F	ark, MN	1	1			1	1				
DEPTH IN FEET	Surface Elevation	893.7			GEOLOGY	N	MC	SA	AMPLE FYPE	REC IN.	FIELI WC	D & LA	BORAT		TEST
1 -	FILL, mostly clayey sand, brown, frozen				FILL		F		SU		we	DEN		TL	/0-#.
2 — 3 —	FILL, mostly silty sand, a frozen to 3.5'	little gravel	, black,			25	F/M	X	SS	20					
4 — 5 —	SAPRIC PEAT, black (PT)		<u></u>	SWAMP DEPOSIT		M	R	SS	20					
6 -						5	M		22	20					
7	ORGANIC CLAY, trace r soft (CL)	oots, black	and gray,			4	М	$\left \right $	SS	24	30				
9 – 10 –	LEAN CLAY, gray, very s	soft (CL)			0	1	W	R	SS	18	28				
11 — 12 —		1.41					vv		55	10	20				
13 —	SANDY LEAN CLAY, a roots, gray, firm, lenses of	little gravel sand (CL)	, frace		TILL	6	W		SS	12	18				
14 —	END OF BORING														
DEP	TH: DRILLING METHOD			WATI	ER LEVEL MEA			TS							
		DATE	TIME	SAMPI		CAV	/E-IN PTH	Ι	DRILLIN UID LE	NG VEI	WATE LEVE		NOTE: THE A		
0-12	1 ¹ /2' 3.25" HSA	1/26/18	11:40	14.5			4.5				Non		SHEET		
													XPLA	NATIO	ON (
BORIN COMPL	G ETED: 1/26/18											П	ERMIN		
DR: TA	A LG: SB Rig: 69C												TH	IS LO	G

AET N	No: 01-07434					Lo	og of	Bo	ring No	o		B-5 (p. 1 o	of 1)	
Projec	t: Westwood Hills M	Nature Ce	nter; St. I	Louis F	ark, MN										
DEPTH	Surface Elevation	892.7			GEOLOGY	N	MC	SA	MPLE	REC	FIELI) & LA	BORAT	FORY	TEST
IN FEET	MATERIAL					N	MC	1	YPE	IN.	WC	DEN	LL	PL	%-# 2
1 -	FILL, mostly clayey sand, roots, dark brown, frozen	a little grav	vel, trace		FILL		F		SU						
2 —	FILL, mostly silty sand, a	little gravel	, dark					R							
3 —	brown, frozen to 2.5'	U	,			21	F/M	X	SS	22					
4 –		0.01						सि							
5 -	SAPRIC PEAT, black, a lo (PT)	ens of fibric	e peat at 7'	<u></u>	SWAMP DEPOSIT	7	М	M	SS	12					
6 — 7 —				<u></u>				स							
8 —				<u></u>		5	М		SS	20					
9 – 10 –	HEMIC PEAT, with shells	s, black (PT	.)					सि							
11 -					9	3	M	M	SS	24					
12 -	BOGLIME WITH SILT, §	may (OL-O	н					I							
13 —	boolinie with siel, g	giay (OL-O.	11)			WH	W	\mathbb{N}	SS	24					
14 —	CLAYEY SAND, fine gra	ined, gray,	w et, very		COARSE	-		\square							
15 —	loose, laminations and lens (SC)	ses of sandy	y lean clay		ALLUVIUM/ SWAMP DEPOSIT	3	W	M	SS	22					
16 — 17 —								<u>}</u>							
18 -	CLANEN CAND - 1'44	1	6		MIXED	- 8	W/M	M	SS	18	16				
19 —	CLAYEY SAND, a little g stiff, laminations of silty s	and (SC)	, firm to		ALLUVIUM			/\ {{			13				
20 —						12	М	\mathbb{N}	SS	16	15				
21 -					*OILLE C										_
	END OF BORING				*SWAMP DEPOSIT										
DEP	TH: DRILLING METHOD			WAT	ER LEVEL MEA	SURE	EMEN	TS				1	NOTE:	REFE	RT
0-19	0½' 3.25" HSA	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	CAV DE	/E-IN PTH	FL	ORILLIN UID LE	JG VEL	WATE LEVE	ER L	THE A	TTAC	HEI
<u>v-1</u>		1/26/18	8:00	14.5			2.8				12.6		SHEET	TS FOI	۲ AN
													XPLA		
BORIN COMPL	g leted: 1/26/18											T	ERMIN		
DR: TA	A LG: SB Rig: 69 C													IS LO	

AMERICAN ENGINEERING TESTING, INC.

AET 1	No: 01-07434					Lo	og of	Bo	ring N	0	F	8-6A	(p. 1	of 1)	
Projec	et: Westwood Hills N	lature Ce	nter; St. I	Louis I	ark, MN										
DEPTH	Surface Elevation	893.8			GEOLOGY			SA	MPLE	REC	FIELI) & LA	BORA	FORY	TES
IN FEET	MATERIAL I	DESCRIPTIO	DN		0202001	N	MC]	TYPE	ÎN.	WC	DEN	LL	PL	%- #
	5" Bituminous pavement				FILL		F	Ł	SU						
1 —	FILL, mostly silty sand, a brown, frozen	ittle gravel	, dark				F		SU						
2 — 3 —	FILL, mostly silty sand wir little gravel, trace roots, lig frozen to 2.5'					15	F/M		SS	16					
4 —								<u>र</u>							
5 —	CLAYEY SAND, a little g gray and light brown mottl	ravel, trace ed, firm (S	e roots, C)		TILL	6	М	M	SS	16	15				
6 -							T	/\ स्र							
7 — 8 —	SAND, a little gravel, fine light brown and gray, wate	to medium rbearing, lo	grained, bose (SP)		COARSE ALLUVIUM	7	w	$\left \right\rangle$	SS	15					
9 —								<u>र</u> ्ग							
10 —						10	W	M	SS	10					
11 — 12 —								/\ {}							
13 -								<u></u> []							
14 —						6	W	M	SS	18					
	END OF BORING							[]							
DEP	TH: DRILLING METHOD			WAT	ER LEVEL MEA	 	EMEN'	L TS					NOTE:	REE	 гр т
0-12	2 ¹ / ₂ ' 3.25" HSA	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	CAV DE	/E-IN PTH	I FL	ORILLIN UID LE	NG VEL	WATI LEVE		THE A		
012		1/24/18	1:30	9.0			.7				6.8		SHEET	FS FOI	R AN
		1/24/18	1:35	9.0	7.0	7	.7	1			6.5	H	EXPLA	NATIO	ON C
BORIN COMPI	G LETED: 1/24/18											T	ERMIN	IOLO	GY (
DR: T						1		1					TH	IS LO	G

AET N	lo: 01-07434					L	og of	Bo	ring N	o		B-7 ((p. 1 o	of 1)	
Project	: Westwood Hills	Nature Cer	nter; St.	Louis I	Park, MN										
DEPTH	Surface Elevation	896.6			GEOLOGY	N	MC	SA	AMPLE FYPE	REC	FIELI) & LA	BORA	FORY	TES
IN FEET		L DESCRIPTIO				IN	MC]]	ГҮРЕ	IN.	WC	DEN	LL	PL	%- #
1 -	FILL, mostly sandy lean little gravel, trace roots, b	clay and clay black, frozen	ey sand, a to 2'	ι 	FILL		F		SU						
2 +	FILL, mostly clayey sand	l, dark brown			-			51							
3 —						5	М	X	SS	18					
4 —								<u>स</u>							
5 -						5	М	M	SS	24					
6 - 7 -								/\ <u>र</u> ा							
8 -	SILTY SAND, a little gra grained, dark brown, wet	avel, fine to r , loose (SM)	nedium		COARSE ALLUVIUM	5	w	M	SS	14					
9 -							⊥	// {{							
10 -						5	W	\mathbb{N}	SS	20					
11 -								 स							
12 —	SAND, a little gravel, fin light brown, waterbearing	e to medium	grained, (SP)		-			Ł							
13 -	nghi oroʻni, natorotaring	5, (01) 10000				6	W	X	SS	16					
14 -	END OF BORING							/ \							
DEPT	TH: DRILLING METHOD			WAT	ER LEVEL ME		EMENÍ								
		DATE	TIME	SAMPI			VE-IN	-	DRILLIN UID LE	NG	WATI LEVE		NOTE: THE A		
0-12	¹ / ₂ ' 3.25" HSA	1/25/18	1:35	11.		-	ртн).7	FL	UID LE	VEL	LEVE 9.4		SHEET		
		1/25/18	1:40	11.		_). 7				9.1		EXPLA	NATI	ON (
BORINO COMPL	G ETED: 1/25/18		-										ERMIN	IOLO	GY (
				-				+						IS LO	

AET N	No: 01-07434					L	og of	Bo	ring N	o		B-8 ((p. 1 o	of 1)	
Projec	t: Westwood Hills N	Nature Ce	nter; St. I	Louis P	ark, MN										
DEPTH	Surface Elevation	895.1			GEOLOGY	N	MC	SA	MPLE	REC	FIELI) & LA	BORA	FORY	TES?
IN FEET	MATERIAL I					IN	MC		ГҮРЕ	IN.	WC	DEN	LL	PL	%- #
1 -	FILL, mostly clayey sand a little gravel, trace roots, bla	and sandy l ack, frozen	ean clay, a to 2'		FILL		F	****	SU						
2 — 3 —	FILL, mostly clayey sand a black and brown	and sandy l	ean clay,			7	M	KI	SS	18					
4 -								। म							
5 —	CLAYEY SAND, a little g brown, stiff to firm (SC)	gravel, brov	vn to light		TILL	12	M		SS	15	20				
6 —								Д							
7 -							M	RT N	TW	17					
8 - 9 -							171	म	IW	16					
10 -								$\left \right\rangle$							
11 -						8	M	Å	SS	18					
12 —								ł							
13 —	SILTY GRAVEL WITH coarse grained, light brown (GM)				COARSE ALLUVIUM	15	w		SS	16					
14 —								Д							
15 —								ł							
16 —								ł							
17 —								H							
18 —								ł							
19 —								Ħ							
20 -	SAND, a little gravel, fine light brown, waterbearing,	to medium medium de	grained, ense (SP)			13	W	X	SS	18					
21 —	END OF BORING														+
 DEP	TH: DRILLING METHOD			WATI	ER LEVEL MEA		 EMEN	TS							 'n
		DATE	TIME	SAMPL			VE-IN PTH	1	DRILLIN UID LE	IG.	WATI LEVE		NOTE: THE A		
0-19	0 ¹ / ₂ ' 3.25" HSA	1/25/18	12:30	14.5			2.2	rL	UID LE	VEL	8.8		SHEET		
		1/25/18	12:35	14.5			2.2			-+	7.9		EXPLA	NATIO	ON C
BORIN	G LETED: 1/25/18												ERMIN	IOLOG	GY (
DR: TA						1							TH	IS LO	G

01-DHR-060

AET N	No: 01-07434					L	og of	Bo	ring N	o		B-9	(p. 1 o	of 1)	
Projec	et: Westwood Hills N	lature Ce	nter; St. I	Louis P	ark, MN										
DEPTH IN FEET	Surface Elevation	895.0			GEOLOGY	N	MC	SA	MPLE FYPE	REC	FIELI) & LA	BORA	FORY	TEST
FEET	MATERIAL I					1	WIC		ГҮРЕ	IN.	WC	DEN	LL	PL	%- #
1 —	FILL, mostly sand with sil roots, dark brown, frozen t	t, a little gr o 2.5'	avel, trace		FILL		F		SU						
2 —								R							
3 —						13	F/M	X	SS	12					
4 —								प्ति							
5 —	ORGANIC CLAY, trace r firm (OH)	oots, black	to gray,	<u>117</u> 117	SWAMP DEPOSIT	6	M	\square	SS	12					
6 -				<u></u>				Д							
7 —								KT KT							
8 —						6	М		SS	20					
9 —							┸	प्ति							
10 -	BOGLIME WITH SILT, g (OL-OH)	ray, trace r	roots			_		\square	~~						
11 -						5	M	Ŵ	SS	13					
12 —								Ł							
13 —															
14 —							M		TW	20					
15 —								Ł							
16 —								ł							
17 —								ł							
18 —								ł							
19 —								ł							
20 -	SAND, a little gravel, fine gray, waterbearing, loose (to medium SP)	grained,		COARSE ALLUVIUM	15	W	R	SS	12					
21 —	END OF BORING							$\left \right\rangle$							+
				WATI											
DEP		DATE	TIME	SAMPL DEPT	ER LEVEL MEA ED CASING H DEPTH		EMEN /E-IN PTH	-	ORILLIN UID LE	IG	WATH LEVE		NOTE: THE A		
0-19	9½' 3.25" HSA	1/25/18	10:55	DEPT 21.0		-	ртн 9.0	FL	UID LE	VEL	LEVE 10.8		SHEET		
		1/25/18	10:33	21.0		-	9.0 9.0	-			<u> </u>		EXPLA		
BORIN	G LETED: 1/25/18	1/20/10	11.00	21.0	17.5						7.0		ERMIN		
DR: TA													TH	IS LO	G

ENGINEERING TESTING, INC.

AET N	No: 01-07434					Lo	og of	Bo	ring N	o		B-10	(p. 1)	ot 1)	
Projec	t: Westwood Hills N	Nature Ce	nter; St.]	Louis P	ark, MN										
DEPTH	Surface Elevation	893.9			GEOLOGY			SA	MPLE	REC	FIELI) & LA	BORA	FORY	TES
IN FEET	MATERIAL I	DESCRIPTIC	DN		GLOLOGI	N	MC		TYPE	IN.	WC	DEN	LL	PL	%- #
	6" Bituminous pavement				FILL		F	Ł	SU						
1 -	FILL, mostly silty sand, a brown to light brown, froz	little gravel en	, dark				F	Į	SU						
2 —								R							
3 —	HEMIC PEAT, lamination	us of sand, l	olack,	<u></u>	SWAMP	66	F	X	SS	18					
4 —	frozen to 3.5' (PT)			<u></u>	DEPOSIT			<u>र</u>							
5 —				<u></u>		8	M	M	SS	5					
6 —				<u></u>				 ਸ							
7 —	SILTY SAND, a little grav grained, gray, moist, loose	vel, fine to r (SM)	medium		COARSE ALLUVIUM				66	(
8 — 9 —						9	W/M	ľ	SS	6					
10 -	SAND, fine to medium gra waterbearing, very loose to	ained, light	brown,					KT KT							
11 -	waterbearing, very loose to	o loose (SP				2	W		SS	10					
12 —								Ŧ							
13 —						5	W	\square	SS	15					
14 —							vv	Д	55	15					
15 —															
16 —								Į							
17 — 18 —															
18 -								ł							
20 -	SAND WITH GRAVEL, f grained, light gray, waterb					10	W	¥	SS	16					
21 —	END OF BORING														
 DEP	TH: DRILLING METHOD			WATE	R LEVEL MEA	SURF	EMEN'	L I TS							
		DATE	TIME	SAMPL		-	/E-IN PTH		DRILLIN UID LE	IG	WATI LEVE		NOTE: THE A		
0-19	0 ¹ / ₂ ' 3.25" HSA			-				FL	UID LE	VEL			SHEET		
		1/24/18	10:15	11.5			.1	-			7.6	_	EXPLA		
BORIN	G	1/24/18	10:25	11.5	9.5	8	.7	-			6.8		ERMIN		
	g leted: 1/24/18							-							
DR: TA	A LG: SB Rig: 69C												IH	IS LO	U

AMERICAN ENGINEERING TESTING, INC.

AET N	No: 01-07434					L	og of	Bor	ring N	o	ŀ	8-11	(p. 1 o	of 1)	
Projec	t: Westwood Hills N	Nature Ce	nter; St. 1	Louis P	ark, MN										
DEPTH	Surface Elevation	893.2			GEOLOGY			SA	MPLE	REC	FIELI) & LA	BORAT	ORY	TES
IN FEET	MATERIAL	DESCRIPTIC	DN		GLOLOGI	N	MC	T	MPLE YPE	IN.	WC	DEN	LL	PL	%- #
	6" Bituminous pavement				FILL		F	4	SU						
1 -	FILL, mostly silty sand, a brown, frozen	little gravel	, dark				F	Į	SU						
2 — 3 —	FILL, mostly silty sand, a frozen	U	, ,			68	F/M		SS	24					
3 — 4 —	FILL, mostly clayey sand, roots, black, frozen to 3.5'	a little grav	el, trace			08	Γ/ΙΝΙ	A	33	24					
5 —	SAPRIC PEAT, a little gra laminations of sand (PT)	avel, black,			SWAMP DEPOSIT	57	М	ST V	SS	8					
6 —				<u> 117</u> 117 117		57		A	33	0					
7 — 8 —	ORGANIC SANDY LEA gravel, black to gray, soft	N TO FAT (OL-OH)	, a little	<u></u>	X	4	W/M		SS	20					
8 – 9 –								\mathbb{R}	00	20					
10 —	CLAYEY SAND, a little s	gravel. grav	, soft to		MIXED	-					21				
11 -	firm (SC)	5, 8j	,		ALLUVIUM	4	W/M		SS	20					
12 —								ł							
13 —						5	W/M		SS	16	21				
14 —								/\ स							
15 — 16 —								Ħ							
17 —								Ħ							
18 —								Ħ							
19 —								Ŧ							
20 -	SILTY SAND, a little grav grained, gray, wet, loose (S	vel, fine to 1 SM)	medium			9	W/M		SS	10					
21 —	END OF BORING														
DEP	TH: DRILLING METHOD			WATE	R LEVEL MEA	SURI	EMEN	TS		1	1	ר י	NOTE:	REFE	
0.41		DATE	TIME	SAMPL DEPTI	ED CASING H DEPTH	CAV	/E-IN PTH	ELL	ORILLIN UID LE	NG VET	WATE LEVE		THE A		
0-19	0½' 3.25" HSA	1/24/18	12:20	11.5	9.5	-	9.3			V EL	1.7		SHEET		
		1/24/18	12:20	11.5).3				7.0		XPLAI		
BORIN	G LETED: 1/24/18	1,21,10	12.00	11.5	7.0	, 		-					ERMIN	OLO	GY (
COMPI	A LG: SB Rig: 69C					-		-				_	тц	IS LO	C

AET N	No: 01-07434					Lo	og of	Bo	ring N	o	ŀ	8-12	(p. 1 o	of 1)	
Projec	t: Westwood Hills	Nature Cei	nter; St. I	Louis P	ark, MN										
DEPTH	Surface Elevation	893.6			GEOLOGY			SA	MPLE	REC	FIELI) & LA	BORAT	FORY	TES
IN FEET		DESCRIPTIC	DN		0202001	N	MC		ΓΥΡΕ	IN.	WC	DEN	LL	PL	%- #
1 -	FILL, mostly clayey sand gravel, trace roots, brown	and silty sar to black, fro	nd, a little ozen to 2'		FILL		F	2222	SU						
2 —								R							
3 —						8	М	X	SS	16					
4 —		L /			SWAMP			स्रि							
5 —	SAPRIC PEAT, black (P	[)		<u></u>	DEPOSIT	10		M	SS	14					
6 -				<u></u>				И							
7 — 8 —	SILTY SAND, a little gra grained, gray, moist, loose (SM)	vel, fine to 1 e, a lens of c	medium layey sand	1	COARSE ALLUVIUM	7	W/M		SS	13					
9 —								// स							
10 -	SAND, fine to medium gr waterbearing, loose (SP)	ained, gray,					337	\square	66	10					
11 -						6	W	M	SS	18					
12 —								ł							
13 —	SAND, a little gravel, find gray, waterbearing, very d	e to coarse g lense (SP)	rained,			54	W	M	SS	10					
14 —								Д	22	10					
15 —								ł							
16 —								ł							
17 —								ł							
18 -								ł							
19 - 20 -	SAND, fine to medium gr waterbearing, loose (SP)	ained, gray,					117	1] /	66	10					
21 —	END OF BORING					7	W	М	SS	13					_
	EUD OF DOMING	-1										ļ,			
DEP	TH: DRILLING METHOD			WATI	ER LEVEL MEA	SURE	EMEN	TS				1	NOTE:	REFE	R T
0-19	0½' 3.25" HSA	DATE	TIME	SAMPL DEPT	ED CASING H DEPTH	CAV DE	/E-IN PTH	FL	ORILLIN UID LE	JG VEL	WATE LEVE	ER	THE A	TTAC	HE
V 1/		1/24/18	2:00	11.5			.7	1			6.9		SHEET	IS FOI	R Al
		1/25/18	8:15	11.5	9.5	8	.3				5.5	E	XPLA	NATIO	ON (
BORIN	G LETED: 1/24/18											T	ERMIN	IOLOG	GY (
	A LG: SB Rig: 69C							1					TH	IS LO	G

01-DHR-060

AET N	No: 01-07434					L	og of	Bo	ring N	0	I	8-13	(p. 1 o	of 1)	
Projec	t: Westwood Hills N	Nature Ce	nter; St. I	Louis P	ark, MN										
DEPTH IN FEET	Surface Elevation MATERIAL	893.8 DESCRIPTIO	 DN		GEOLOGY	N	MC	SA	MPLE TYPE	REC IN.	FIELI WC) & LA DEN	BORAT		TES1
1 —	FILL, mostly clayey sand, roots, dark brown, frozen t	a little grav to 2'	vel, trace		FILL		F		SU						
2 — 3 —	SAPRIC PEAT, black, lan	ninations of	f sand (PT)		SWAMP DEPOSIT	6	M	K	SS	8					
4 —				<u></u>				/\ स्							
5 -	CLAYEY SAND, a little g firm, a lens of silty sand (S	gravel, trace SC)	e roots,		MIXED ALLUVIUM	8	M	$\left \right\rangle$	SS	22	16				
6 — 7 —	SAND for to get the	ing 1:-14	h uor		COARSE		▼	रि							
8 —	SAND, fine to medium gra gray, waterbearing, loose t medium dense (SP)				ALLUVIUM	6	W		SS	20					
9 —								स्							
10 — 11 —						6	W		SS	24					
12 -								7 7							
13 —						2	W		SS	13					
14 —								A F	00						
15 — 16 —			•					ł							
17 -															
18 —															
19 —															
20 - 21 -						22	W	X	SS	15					
<i>2</i> 1	END OF BORING														
DEP	TH: DRILLING METHOD			WATE	ER LEVEL ME	ASUR	EMEN	TS		1	1	ר <u> </u>	NOTE:	REFF	ER TO
0-19	0½' 3.25" HSA	DATE	TIME	SAMPL DEPT		_	VE-IN PTH	FL	ORILLIN UID LE	√G VEL	WATH LEVE	ER IL	THE A	TTAC	HED
		1/25/18	9:20	9.0			7.4	_			6.7		SHEET XPLAI		
BORIN COMPL	G ETED: 1/25/18	1/25/18	9:25	9.0	7.0		7.4				6.5		ERMIN	IOLOG	GY C
DR: TA	A LG: SB Rig: 69C												TH	IS LO	G

ENGINEERING TESTING, INC.

AET N	No: 01-07434					L	og of	Bo	ring N	o		3-14	(p. 1 d	of 1)	
Projec	t: Westwood Hills N	Nature Ce	nter; St. 1	Louis I	Park, MN										
DEPTH	Surface Elevation	897.4			GEOLOGY			SA	MPLE	REC	FIELI) & LA	BORAT	FORY	TES
IN FEET	MATERIAL	DESCRIPTIC	DN		GLOLOGI	N	MC		TYPE	IN.	WC	DEN	LL	PL	%- #
1 -	FILL, mostly silty sand, a bituminous pavement, dark	little gravel k brown, fro	, piece of ozen		FILL		F	2222	SU						
2 — 3 —	SAND WITH SILT, a littl medium grained, light brow (SP-SM)	e gravel, fii wn, frozen t	ne to to 3.5'		COARSE ALLUVIUM	64	F/M	K	SS	24					
4 —					•			R							
5 —	SAND WITH SILT, a little medium grained, tan to lig medium dense, a lens of cl	ht brown, n	noist.			12	М	M	SS	18					
6 -								И							
7 — 8 —	CLAYEY SAND WITH C medium grained, light brow	GRAVEL, f wn, moist, r	ine to nedium			15	M	Ň	SS	6					
9 —	dense (SP)							Д	22						
10 -	SILTY SAND, a little grav	vel, fine to	medium				_	11							
11 -	grained, light brown, wet,	loose (SM)				5	W	X	SS	10					
					•			/\ स							
12 -	SAND, fine to medium gra	ained, light	brown.					<u>t</u>							
13 -	wet, loose (SP)					6	W	X	SS	22					
14 —	END OF BORING		-					/ \							+
		1													
DEP	TH: DRILLING METHOD	DATE	TIME		ER LEVEL MEA			1	ORILLIN	NG	WATI	ER	NOTE:		
0-12	2 ¹ / ₂ ' 3.25" HSA	DATE 1/25/18	TIME 10:05	SAMP DEP			/E-IN PTH 0.0	FĹ	DRILLIN UID LE	VEL	LEVE 9.8	EL	THE A SHEE1		
		1/25/18	10:03	11.			0.0).9				<u> </u>		XPLA	NATIO	ON C
BORIN	G ETED: 1/25/18												ERMIN	IOLO	GY C
	A LG: SB Rig: 69C	1		1		+		1					тн	IS LO	C

Appendix C

Cost Estimates

 ENGINEER'S OPINION OF PROBABLE PROJECT COST

 PROJECT:
 Westwood Lake Water Quality Improvement Project

 LOCATION:
 St. Louis Park, MN

 PROJECT #:
 23/27-0051.40

 OPINION OF COST - SUMMARY

	SHEET:	1	OF	
	BY:	JPP	DATE:	5/7/2018
	CHECKED BY:	MAK	DATE:	5/7/2018
	APPROVED BY:	KAL	DATE:	5/7/2018
ISSUED:	For BCWMC/St. Lou	iis Park Review	DATE:	5/7/2018
ISSUED:			DATE:	
ISSUED:			DATE:	
ISSUED:			DATE:	

Engineer's Opinion of Probable Project Cost Concept 1 - ADDITIONAL PERMEABLE PAVERS

<u></u>			ESTIMATED			
Item. No.	ITEM DESCRIPTION	UNIT	QUANTITY	UNIT COST	ITEM COST	NOTES
А	MOBILIZATION/DEMOBILIZATION (5%)	LS	1	\$2,500.00	\$2,500.00	1,2,3,4,5,6,7,8
В	EROSION AND SEDIMENT CONTROL	LS	1	\$500.00	\$500.00	1,2,3,4,5,6,7,8
С	TRAFFIC CONTROL	LS	1	\$500.00	\$500.00	1,2,3,4,5,6,7,8
D	GEOTEXTILE FABRIC	SY	1,000	\$2.50	\$2,500.00	1,2,3,4,5,6,7,8
E	6" CPEP SLOTTED UNDERDRAIN (SMOOTH INTERIOR) & FITTINGS	LF	400	\$18.00	\$7,200.00	1,2,3,4,5,6,7,8
F	6" SCHEDULE 40 SOLID POLYVINYL CHLORIDE (PVC) PIPE & FITTINGS	LF	120	\$18.00	\$2,160.00	1,2,3,4,5,6,7,8
G	UNDERDRAIN CLEANOUT & COVER UNIT	EA	3	\$300.00	\$900.00	1,2,3,4,5,6,7,8
Н	CLEAN WASHED SAND (IN PLACE)	CY	30	\$60.00	\$1,800.00	1,2,3,4,5,6,7,8
I	2"-4" ASTM #3 CRUSHED GRANITE (STRUCTURAL COURSE)	TON	250	\$40.00	\$10,000.00	1,2,3,4,5,6,7,8
l	1" ASTM #57 CRUSHED GRANITE (BASE COURSE)	TON	230	\$40.00	\$9,200.00	1,2,3,4,5,6,7,8
К	PERMEABLE PAVERS WITH BEDDING COURSE (3/8" ASTM #8 CRUSHED GRANITE) AND JOINT FILLER (1/4" ASTM #9 CRUSHED GRANITE)	SF	6,300	\$6.00	\$37,800.00	1,2,3,4,5,6,7,8
L	CONCRETE RIBBON CURB AT PERMEABLE PAVERS	LF	380	\$20.00	\$7,600.00	1,2,3,4,5,6,7,8
М	SITE RESTORATION	AC	0.1	\$4,500.00	\$415.57	1,2,3,4,5,6,7,8
N	OVERFLOW STRUCTURE - 48" CB	EA	3	\$2,500.00	\$7,500.00	1,2,3,4,5,6,7,8
0	12" STORM SEWER	LF	200	\$35.00	\$7,000.00	1,2,3,4,5,6,7,8
Р	SIGNAGE - 1 SIGN	LS	1	\$3,000.00	\$3,000.00	1,2,3,4,5,6,7,8
	CONSTRUCTION SUBTOTAL				\$101,000.00	1,2,3,4,5,6,7,8
	CONSTRUCTION CONTINGENCY (30%)				\$30,000.00	1,5,8
	ESTIMATED CONSTRUCTION COST				\$131,000.00	1,2,3,4,5,6,7,8
	PLANNING, ENGINEERING & DESIGN (30%)				\$39,000.00	1,2,3,4,5,8
	ESTIMATED TOTAL PROJECT COST				\$170,000.00	1,2,3,4,5,7,8
	ESTIMATED ACCURACY RANGE	-20%	·		\$136,000.00	
	ESTIMATED ACCORACT RAINGE	30%			\$221,000.00	5,7,8

Notes

¹ Limited Design Work Completed (10 - 15%).

² Quantities Based on Design Work Completed.

³ Unit Prices Based on Information Available at This Time.

⁴ Limited Field Investigation Completed.

⁵ This feasibility-level (Class 4, 10-15% design completion per ASTM E 2516-06) cost estimate is based on feasibility-level designs, alignments, quantities and unit prices. Costs will change with further design. Time value-of-money escalation costs are not included. A construction schedule is not available at this time. Contingency is an allowance for the net sum of costs that will be in the Final Total Project Cost at the time of the completion of design, but are not included at this level of project definition. The estimated accuracy range for the Total Project Cost as the project is defined is -20% to +30%. The accuracy range is based on professional judgement considering the level of design completed, the complexity of the project and the uncertainties in the project as scoped. The contingency and the accuracy range are not included to include costs for future scope changes that are not part of the project as currently scoped or costs for risk contingency. Operation and Maintenance costs are not included.

⁶ Estimate assumes that projects will not be located on contaminated soil. No costs included for soil correction or overexcavation.

⁷ Estimate costs are to design, construct, and permit each alternative. The estimated costs do not include maintenance, monitoring or

⁸ Estimate costs are reported to nearest thousand dollars.

BARR

 ENGINEER'S OPINION OF PROBABLE PROJECT COST

 PROJECT:
 Westwood Lake Water Quality Improvement Project

 LOCATION:
 St. Louis Park, MN

 PROJECT #:
 23/27-0051.40

 OPINION OF COST - SUMMARY

	SHEET:		1	OF	1	
	BY:	JPP		DAT	E: 5	5/7/2018
	CHECKED BY:	MAK		DAT	E: 5	5/7/2018
	APPROVED BY:	KAL		DAT	E: 5	5/7/2018
ISSUED:	For BCWMC/St. Lou	is Park Review	1	DAT	E: 5	5/7/2018
ISSUED:				DAT	E:	
ISSUED:				DAT	E:	
ISSUED:				DAT	E:	

Engineer's Opinion of Probable Project Cost Concept 2 - EXPAND FILTRATION BASINS

			ESTIMATED			
tem. No.	ITEM DESCRIPTION	UNIT	QUANTITY	UNIT COST	ITEM COST	NOTES
А	MOBILIZATION/DEMOBILIZATION (5%)	LS	1	\$2,200.00	\$2,200.00	1,2,3,4,5,6,7,8
В	EROSION AND SEDIMENT CONTROL	LS	1	\$1,000.00	\$1,000.00	1,2,3,4,5,6,7,8
С	TRAFFIC CONTROL	LS	1	\$500.00	\$500.00	1,2,3,4,5,6,7,8
D	COMMON EXCAVATION (IN-PLACE)	CY	168	\$7.50	\$1,262.50	1,2,3,4,5,6,7,8
Е	DISPOSE OF EXCAVATED MATERIALS OFF-SITE (IN-PLACE)	CY	168	\$12.00	\$2,020.00	1,2,3,4,5,6,7,8
F	12" CPEP STORM SEWER	LF	125	\$25.00	\$3,125.00	1,2,3,4,5,6,7,8
Н	6" CPEP SLOTTED UNDERDRAIN (SMOOTH INTERIOR) & FITTINGS	LF	95	\$18.00	\$1,710.00	
I	UNDERDRAIN CLEANOUT & COVER UNIT	EA	2	\$300.00	\$600.00	1,2,3,4,5,6,7,8
J	CLEAN WASHED SAND	CY	95	\$60.00	\$5,700.00	1,2,3,4,5,6,7,8
К	GEOTEXTILE FILTER - MnDOT TYPE V	SY	17	\$20.00	\$340.00	1,2,3,4,5,6,7,8
L	GRANULAR FILTER MATERIAL	TON	0.4	\$200.00	\$80.00	1,2,3,4,5,6,7,8
М	RIPRAP - MnDOT CLASS II	TON	12	\$60.00	\$720.00	1,2,3,4,5,6,7,8
Ν	PERFORM SOIL LOOSENING	SY	116	\$4.00	\$465.33	1,2,3,4,5,6,7,8
0	PLANTING SOIL (IN-PLACE)	CY	109	\$50.00	\$5,451.85	1,2,3,4,5,6,7,8
Р	PLANTINGS	EACH	1,060	\$3.50	\$3,710.00	1,2,3,4,5,6,7,8
Q	DOUBLE SHREDDED HARDWOOD MULCH	CY	27	\$65.00	\$1,771.85	1,2,3,4,5,6,7,8
R	4" BLACK STEEL LANDSCAPE EDGING	LF	273	\$10.00	\$2,730.00	1,2,3,4,5,6,7,8
S	SITE RESTORATION	AC	0.07	\$4,500.00	\$334.30	1,2,3,4,5,6,7,8
Т	SIGNAGE - 1 SIGN	LS	1	\$3,000.00	\$3,000.00	1,2,3,4,5,6,7,8
	CONSTRUCTION SUBTOTAL				\$37,000.00	1,2,3,4,5,6,7,8
	CONSTRUCTION CONTINGENCY (30%)				\$11,000.00	1,5,8
	ESTIMATED CONSTRUCTION COST				\$48,000.00	1,2,3,4,5,6,7,8
	PLANNING, ENGINEERING & DESIGN (30%)				\$14,000.00	1,2,3,4,5,8
	ESTIMATED TOTAL PROJECT COST				\$62,000.00	1234578
		-20%			\$50,000.00	
	ESTIMATED ACCURACY RANGE	30%			\$81,000.00	578

Notes

BARR

¹ Limited Design Work Completed (10 - 15%).

² Quantities Based on Design Work Completed.

³ Unit Prices Based on Information Available at This Time.

⁴ Limited Field Investigation Completed.

⁵ This feasibility-level (Class 4, 10-15% design completion per ASTM E 2516-06) cost estimate is based on feasibility-level designs, alignments, quantities and unit prices. Costs will change with further design. Time value-of-money escalation costs are not included. A construction schedule is not available at this time. Contingency is an allowance for the net sum of costs that will be in the Final Total Project Cost at the time of the completion of design, but are not included at this level of project definition. The estimated accuracy range for the Total Project Cost as the project is defined is -20% to +30%. The accuracy range is based on professional judgement considering the level of design completed, the complexity of the project and the uncertainties in the project as scoped. The contingency and the accuracy range are not intended to include costs for future scope changes that are not part of the project as currently scoped or costs for risk contingency. Operation and Maintenance costs are not included.

⁶ Estimate assumes that projects will not be located on contaminated soil.

⁷ Estimate costs are to design, construct, and permit each alternative. The estimated costs do not include maintenance, monitoring or

⁸ Estimate costs are reported to nearest thousand dollars.

PREPARED	BY: BARR	ENGINEERING	COMPANY
----------	----------	-------------	---------

PREPARED BY: BARR ENGINEERING COMPANY	SHEET: 1	OF 1
BARR	BY: JPP	DATE: 5/7/2018
	CHECKED BY: MAK	DATE: 5/7/2018
ENGINEER'S OPINION OF PROBABLE PROJECT COST	APPROVED BY: KAL	DATE: 5/7/2018
PROJECT: Westwood Lake Water Quality Improvement Project	ISSUED: For BCWMC/St. Louis Park Review	DATE: 5/7/2018
LOCATION: St. Louis Park, MN	ISSUED:	DATE:
PROJECT #: 23/27-0051.40	ISSUED:	DATE:
OPINION OF COST - SUMMARY	ISSUED:	DATE:

Engineer's Opinion of Probable Project Cost Concept 3 - LINEAR WATER FEATURE

tem. No.	ITEM DESCRIPTION	UNIT	ESTIMATED QUANTITY	UNIT COST	ITEM COST	NOTES
А	MOBILIZATION/DEMOBILIZATION (5%)	LS	1	\$13,000.00	\$13,000.00	
В	EROSION AND SEDIMENT CONTROL	LS	1	\$1,000.00		1,2,3,4,5,6,7,8
С	TRAFFIC CONTROL	LS	1	\$500.00	\$500.00	1,2,3,4,5,6,7,8
D	BASIN AND CREEK BED EXCAVATION, FILL, DROP STRUCTURES, OVERFLOWS, MULCH, PLANTS, AND RESTORATION	SF	6,000	\$15.00	\$90,000.00	1.2.3.4.5.6.7.8
E	24" CPEP STORM SEWER	LF	268	\$45.00	\$12,060.00	
F	SOLAR POWER SUBMERSIBLE PUMP & CONNECTIONS	LS	1	\$10,000.00	\$10,000.00	
G	KID POWER SUBMERSIBLE PUMP & CONNECTIONS	LS	1	\$10,000.00	\$10,000.00	1,2,3,4,5,6,7,8
Н	KID POWER SITE FEATURES	LS	1	\$25,000.00	\$25,000.00	
1	10' DIAMETER MANHOLE STRUCTURE, 10' DEPTH	EA	1	\$25,000.00		1,2,3,4,5,6,7,8
J	10' DIAMETER MANHOLE STRUCTURE, 5' DEPTH	EA	1	\$15,000.00	\$15,000.00	1,2,3,4,5,6,7,8
К	SIGNAGE - 2 SIGNS	LS	1	\$6,000.00	\$6,000.00	1,2,3,4,5,6,7,8
	CONSTRUCTION SUBTOTAL				\$208,000.00	1,2,3,4,5,6,7,8
	CONSTRUCTION CONTINGENCY (30%)				\$62,000.00	1,5,8
	ESTIMATED CONSTRUCTION COST				\$270,000.00	1,2,3,4,5,6,7,8
	PLANNING, ENGINEERING & DESIGN (30%)				\$81,000.00	1,2,3,4,5,8
	ESTIMATED TOTAL PROJECT COST				\$351,000.00	1,2,3,4,5,7,8
	ESTIMATED ACCURACY RANGE	-20%			\$281,000.00	5,7,8
	LITIMATED ACCONACT NAME	30%			\$457,000.00	5,7,8

Notes

¹ Limited Design Work Completed (10 - 15%).

² Quantities Based on Design Work Completed.

³ Unit Prices Based on Information Available at This Time.

⁴ Limited Field Investigation Completed.

⁵ This feasibility-level (Class 4, 10-15% design completion per ASTM E 2516-06) cost estimate is based on feasibility-level designs, alignments, quantities and unit prices. Costs will change with further design. Time value-of-money escalation costs are not included. A construction schedule is not available at this time. Contingency is an allowance for the net sum of costs that will be in the Final Total Project Cost at the time of the completion of design, but are not included at this level of project definition. The estimated accuracy range for the Total Project Cost as the project is defined is -20% to +30%. The accuracy range is based on professional judgement considering the level of design completed, the complexity of the project and the uncertainties in the project as scoped. The contingency and the accuracy range are not intended to include costs for future scope changes that are not part of the project as currently scoped or costs for risk contingency. Operation and Maintenance costs are not included.

Estimate assumes projects will not be located on contaminated soil.

7 Estimate costs are to design, construct, and permit each alternative. The estimated costs do not include maintenance, monitoring or additional tasks following constuction.

⁸ Estimate costs are reported to nearest thousand dollars.

ENGINEER'S OPINION OF PROBABLE PROJECT COST PROJECT: Westwood Lake Water Quality Improvement Project LOCATION: St. Louis Park, MN PROJECT #: 23/27-0051.40 **OPINION OF COST - SUMMARY**

Engineer's Opinion of Probable Project Cost Concept 4 - HEATED SIDEWALK

		SHEET:		1	OF	1	
		BY:	JPP			DATE:	5/7/2018
		CHECKED BY:	MAK			DATE:	5/7/2018
		APPROVED BY:	KAL			DATE:	5/7/2018
19	SSUED:	For BCWMC/St. Lo	uis Park Review			DATE:	5/7/2018
19	SSUED:					DATE:	
15	SSUED:					DATE:	
19	SSUED:					DATE:	

ltem. No.	ITEM DESCRIPTION	UNIT	ESTIMATED QUANTITY	UNIT COST	ITEM COST	NOTES
А	MOBILIZATION/DEMOBILIZATION (5%)	LS	1	\$9,800.00	\$9,800.00	1,2,3,4,5,6,7,8
В	EROSION AND SEDIMENT CONTROL	LS	1	\$1,000.00		1,2,3,4,5,6,7,8
С	TRAFFIC CONTROL	LS	1	\$500.00	\$500.00	1,2,3,4,5,6,7,8
D	HEATED SIDEWALK WITH MECHANICAL AND ELECTRICAL	LS	1	\$140,000.00	\$140,000.00	1,2,3,4,5,6,7,8
	CONSTRUCTION SUBTOTAL				\$151,000.00	1,2,3,4,5,6,7,8
	CONSTRUCTION CONTINGENCY (30%)				\$45,000.00	1,5,8
	ESTIMATED CONSTRUCTION COST				\$196,000.00	1,2,3,4,5,6,7,8
	PLANNING, ENGINEERING & DESIGN (30%)				\$59,000.00	1,2,3,4,5,8
	ESTIMATED TOTAL PROJECT COST				\$255,000.00	1,2,3,4,5,7,8
		-20%		\$204,000.00 5,7,8		
	ESTIMATED ACCURACY RANGE				\$332,000.00	5,7,8

Notes

¹ Limited Design Work Completed (10 - 15%).

² Quantities Based on Design Work Completed.

³ Unit Prices Based on Information Available at This Time.

⁴ Limited Field Investigation Completed.

⁵ This feasibility-level (Class 4, 10-15% design completion per ASTM E 2516-06) cost estimate is based on feasibility-level designs, alignments, quantities and unit prices. Costs will change with further design. Time value-of-money escalation costs are not included. A construction schedule is not available at this time. Contingency is an allowance for the net sum of costs that will be in the Final Total Project Cost at the time of the completion of design, but are not included at this level of project definition. The estimated accuracy range for the Total Project Cost as the project is defined is -20% to +30%. The accuracy range is based on professional judgement considering the level of design completed, the complexity of the project and the uncertainties in the project as scoped. The contingency and the accuracy range are not intended to include costs for future scope changes that are not part of the project as currently scoped or costs for risk contingency. Operation and Maintenance costs are not included.

Estimate assumes projects will not be located on contaminated soil.

Estimate costs are to design, construct, and permit each alternative. The estimated costs do not include maintenance, monitoring or additional tasks following constuction. This cost does not include concrete placement or reinforcement, and assumes the system is coordinated with the concrete installation.

⁸ Estimate costs are reported to nearest thousand dollars.

BARR

	SHEET. I	
BARR	BY: JPP	DATE: 5/7/2018
	CHECKED BY: MAK	DATE: 5/7/2018
ENGINEER'S OPINION OF PROBABLE PROJECT COST	APPROVED BY: KAL	DATE: 5/7/2018
PROJECT: Westwood Lake Water Quality Improvement Project	ISSUED: For BCWMC/St. Louis Park Review	DATE: 5/7/2018
LOCATION: St. Louis Park, MN	ISSUED:	DATE:
PROJECT #: 23/27-0051.40	ISSUED:	DATE:
OPINION OF COST - SUMMARY	ISSUED:	DATE:

спеет.

1

1

Engineer's Opinion of Probable Project Cost Concept 5 - WATER REUSE

ltem. No.	ITEM DESCRIPTION	UNIT	ESTIMATED QUANTITY	UNIT COST	ITEM COST	NOTES
А	MOBILIZATION/DEMOBILIZATION (5%)	LS	1	\$22,700.00	\$22,700.00	1,2,3,4,5,6,7,8
В	EROSION AND SEDIMENT CONTROL	LS	1	\$1,000.00	\$1,000.00	1,2,3,4,5,6,7,8
С	TRAFFIC CONTROL	LS	1	\$500.00	\$500.00	1,2,3,4,5,6,7,8
D	WATER REUSE SYSTEM	LS	1	\$100,000.00	\$100,000.00	1,2,3,4,5,6,7,8
E	STORAGE, 10,000 GALLONS	LS	1	\$50,000.00	\$50,000.00	1,2,3,4,5,6,7,8
	CONSTRUCTION SUBTOTAL				\$174,000.00	1,2,3,4,5,6,7,8
	CONSTRUCTION CONTINGENCY (30%)				\$52,000.00	1,5,8
	ESTIMATED CONSTRUCTION COST				\$226,000.00	1,2,3,4,5,6,7,8
	PLANNING, ENGINEERING & DESIGN (30%)				\$68,000.00	1,2,3,4,5,8
	ESTIMATED TOTAL PROJECT COST				\$294,000.00	1,2,3,4,5,7,8
	ESTIMATED ACCURACY RANGE	-20%			\$236,000.00	
		30%			\$383,000.00	5,7,8

Notes

¹ Limited Design Work Completed (10 - 15%).

² Quantities Based on Design Work Completed.

³ Unit Prices Based on Information Available at This Time.

⁴ Limited Field Investigation Completed.

⁵ This feasibility-level (Class 4, 10-15% design completion per ASTM E 2516-06) cost estimate is based on feasibility-level designs, alignments, quantities and unit prices. Costs will change with further design. Time value-of-money escalation costs are not included. A construction schedule is not available at this time. Contingency is an allowance for the net sum of costs that will be in the Final Total Project Cost at the time of the completion of design, but are not included at this level of project definition. The estimated accuracy range for the Total Project Cost as the project is defined is -20% to +30%. The accuracy range is based on professional judgement considering the level of design completed, the complexity of the project and the uncertainties in the project as scoped. The contingency and the accuracy range are not intended to include costs for future scope changes that are not part of the project as currently scoped or costs for risk contingency. Operation and Maintenance costs are not included.

^b Estimate assumes projects will not be located on contaminated soil.

⁷ Estimate costs are to design, construct, and permit each alternative. The estimated costs do not include maintenance, monitoring or additional tasks following constuction.

⁸ Estimate costs are reported to nearest thousand dollars.